About the solvability of matrix polynomial equations

Preprint English OPEN
Netzer, Tim; Thom, Andreas;
(2016)
  • Subject: Mathematics - Rings and Algebras | Mathematics - Algebraic Geometry
    arxiv: Mathematics::Spectral Theory

We study self-adjoint matrix polynomial equations in a single variable and prove existence of self-adjoint solutions under some assumptions on the leading form. Our main result is that any self-adjoint matrix polynomial equation of odd degree with non-degenerate leading... View more
  • References (8)

    [1] S. Eilenberg and I. Niven, The fundamental theorem of algebra for quaternions. Bull. Amer. Math. Soc. 50(4), (1944), 246-248.

    [2] I.M. Gel'fand, M.M. Kapranov, and A.V. Zelevinski. Discriminants, Resultants and Multidimensional Determinants, Birkh¨auser, Boston-Basel-Berlin, 1994.

    [3] I. Niven, Extension of a Topological Proof of the Fundamental Theorem of Algebra. The American Mathematical Monthly 57(4), (1950), 246-248.

    [4] H. Rodr´ıguez-Ord´on˜ez, A note on the fundamental theorem of algebra for the octonions. Expositiones Mathematicae 25(4), (2007), 355-361.

    [5] F.-J. Turiel, Polynomial maps and even dimensional spheres. Proc. Amer. Math. Soc. 135(8) (2007), 2665-2667.

    [6] J. Weyman and A.V. Zelevinski. Determinantal formulas for multigraded resultants. J. Algebraic Geometry 3, (1994), 569-597.

    [7] R. Wood, Polynomial maps from spheres to spheres, Invent. Math. 5 (1968), 163-168.

    T.N., Universita¨t Innsbruck, 6020 Innsbruck, Austria E-mail address: tim.netzer@uibk.ac.at A.T., TU Dresden, 01062 Dresden, Germany E-mail address: andreas.thom@tu-dresden.de

  • Metrics
Share - Bookmark