Analogue of Pontryagin's maximum principle for multiple integrals minimization problems

Preprint English OPEN
Mikhail, Zelikin (2016)
  • Subject: Mathematics - Optimization and Control

The theorem like Pontryagin's maximum principle for multiple integrals is proved. Unlike the usual maximum principle, the maximum should be taken not over all matrices, but only on matrices of rank one. Examples are given.
  • References (22)
    22 references, page 1 of 3

    [1] J.M.Ball. "The calculus of variations and material science". Quarterly Appl.Mat. P.719-740. (1998).

    [2] J.M.Ball, F.Murat. " W 1;p -quasiconvexity and variational problems for multiple integrals".// J.Func.Anal. V.58, pp.225-255,(1984).

    [3] H.Bo¨rner. U¨ ber die Legendrische Bedingung und die Feldtheorien in der Variationsrechnung der mehrfachen Integrale. //Math.Zeitschr. 46. (1940).

    [4] C.Caratheodory. U¨ ber die Variationsrechnung bei mehrfachen Integralen".// Acta Szeged, 4, S.193-216, (1929).

    [5] A.Clebsch. U¨ ber die zweite Variation Angew.Mathematik, Bd 56, S.122-148,(1859).

    [7] M.Giaquinta, S.Hildebrandt. "Calculus of Variarions." Springer-Verlag, BerlinHeidelberg-New York,(1996).

    [8] E.Giusti. "Minimal surfaces and functions of bounded variation". Birkhauser.Boston Dasel-Stutgart (1977).

    [9] E.Giusti. "Direct Methods in the Calculus of Variations". World Scientific. NewJersey-London- Singapore- Hong Kong, (2005).

    [10] L.Ho¨rmander. "Uniqueness theorems and estimates for normally hyperbolic partial differential equations of the second order". Comptes rendus du Douzi´eme Congres des Mathematiciens Scandinaves, Lund. P.105-115. (1953).

    [11] J.Hadamard. "Sur quelque question Bull.Soc.Math.France. V.33. p.77-80, (1905).

  • Metrics
    No metrics available
Share - Bookmark