# Higher-Rank Tensor Field Theory of Non-Abelian Fracton and Embeddon

- Published: 30 Sep 2019

- Department of Mathematics Harvard University United States
- School of Natural Sciences Institute for Advanced Study United States

[1] J. C. Maxwell, A dynamical theory of the electromagnetic field, Phil. Trans. Roy. Soc. Lond. 155 459-512 (1865).

[2] H. Weyl, Elektron und Gravitation. I, Zeitschrift fur Physik 56 330-352 (1929 May).

[3] W. Pauli, Relativistic field theories of elementary particles, Rev. Mod. Phys. 13 203-232 (1941 Jul). [OpenAIRE]

[4] S.-S. Chern, Characteristic classes of hermitian manifolds, Annals of Mathematics 85-121 (1946).

[5] C. N. Yang and R. L. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance, Phys. Rev. 96 191-195 (1954 Oct).

[6] R. M. Nandkishore and M. Hermele, Fractons, Ann. Rev. Condensed Matter Phys. 10 295-313 (2019), [arXiv:1803.11196].

[7] M. Kalb and P. Ramond, Classical direct interstring action, Phys. Rev. D9 2273-2284 (1974). [OpenAIRE]

[8] T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D83 084019 (2011), [arXiv:1011.5120]. [OpenAIRE]

[9] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02 172 (2015), [arXiv:1412.5148].

[10] J. C. Wang and X.-G. Wen, Non-Abelian string and particle braiding in topological order: Modular SL (3 ,Z ) representation and (3 +1 ) -dimensional twisted gauge theory, Phys. Rev. B 91 035134 (2015 Jan.), [arXiv:1404.7854].

[11] J. C. Wang, Z.-C. Gu and X.-G. Wen, Field theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology and beyond, Phys. Rev. Lett. 114 031601 (2015), [arXiv:1405.7689].

[12] Z.-C. Gu, J. C. Wang and X.-G. Wen, Multi-kink topological terms and charge-binding domain-wall condensation induced symmetry-protected topological states: Beyond Chern-Simons/BF theory, Phys. Rev. B93 115136 (2016), [arXiv:1503.01768].

[13] P. Ye and Z.-C. Gu, Topological quantum field theory of three-dimensional bosonic Abelian-symmetry-protected topological phases, Phys. Rev. B93 205157 (2016), [arXiv:1508.05689].

[14] J. C.-F. Wang, Aspects of Symmetry, Topology and Anomalies in Quantum Matter. PhD thesis, MIT, 2015. arXiv:1602.05569.

[15] J. Wang, X.-G. Wen and S.-T. Yau, Quantum Statistics and Spacetime Surgery, arXiv:1602.05951.