Integers in number systems with positive and negative quadratic Pisot base

Preprint English OPEN
Masáková, Zuzana; Vávra, Tomáš;
(2013)

We consider numeration systems with base $\beta$ and $-\beta$, for quadratic Pisot numbers $\beta$ and focus on comparing the combinatorial structure of the sets $\Z_\beta$ and $\Z_{-\beta}$ of numbers with integer expansion in base $\beta$, resp. $-\beta$. Our main res... View more
  • References (26)
    26 references, page 1 of 3

    [1] B. Adamczewski, Balances for fixed points of primitive substitutions, Theoret. Comput. Sci. 307 (2003), 47-75.

    [2] P. Ambroˇz, D. Dombek, Z. Mas´akova´, E. Pelantova´, Numbers with integer expansion in the numeration system with negative base, Funct. Approx. Comment. Math. 47 (2012), 241-266.

    [3] L. Balkova´, E. Pelantova´, Sˇ. Starosta, Sturmian jungle (or garden?) on multilateral alphabets, RAIRO Theor. Inf. Appl. 44 (2010), 443-470.

    [4] L. Balkova´, E. Pelantova´, O. Turek, Combinatorial and Arithmetical Properties of Infinite Words Associated with Non-simple Quadratic Parry Numbers, RAIRO Theor. Inf. Appl. 41 (2007), 307-328.

    [5] F. Bassino, β-expansions for cubic Pisot numbers, in: 5th Latin American Theoretical INformatics Symposium, LATIN'02, LNCS vol. 2286, Springer-Verlag, Cancun, Mexico, 2002, 141-152.

    [6] Cˇ. Burd´ık, Ch. Frougny, J. P. Gazeau, R. Krejcar, Beta-Integers as Natural Counting Systems for Quasicrystals, J. Phys. A: Math. Gen. 31 (1998), 6449-6472.

    [7] A. Elkharrat, Ch. Frougny, J.P. Gazeau, and J.-L. Verger-Gaugry, Symmetry groups for beta-lattices, Theor. Comp. Sci., 319 (2004), 281-305.

    [8] S. Fabre, Substitutions et β-syst`emes de num´eration, Theoret. Comput. Sci. 137 (1995), 219-236.

    [9] P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Eds. V. Berth´e, S. Ferenczi, C. Mauduit, A. Siegel, Springer, 2002.

    [10] P. G´ora, Invariant densities for generalized β-maps, Ergodic Theory Dynam. Systems 27 (2007), 1583-1598.

  • Metrics
Share - Bookmark