publication . Preprint . Article . 1995

Ward identities of W∞ symmetry and higher-genus amplitudes in 2D string theory

Ken-ji Hamada;
Open Access English
  • Published: 06 Sep 1995
The Ward identities of the $W_{\infty}$ symmetry in two dimensional string theory in the tachyon background are studied in the continuum approach. We consider amplitudes different from 2D string ones by the external leg factor and derive the recursion relations among them. The recursion relations have non-linear terms which give relations among the amplitudes defined on different genus. The solutions agree with the matrix model results even in higher genus. We also discuss differences of roles of the external leg factor between the $c_M = 1$ model and the $c_M <1$ model.
arXiv: High Energy Physics::Theory
free text keywords: High Energy Physics - Theory, Nuclear and High Energy Physics
19 references, page 1 of 2

[1] I. Klebanov, String Theory in Two Dimensions, in “String Theory and Quantum Gravity”, Proceedings of the Trieste Spring School 1991, eds. J. Harvey et al. (World Scientific, Singapore, 1991); A. Jevicki, Developments in 2D String Theory, BROWN-HET-918, hep-th/9309115; P. Ginsparg and G. Moore, Lectures on 2D Gravity and 2D String Theory, YCTP-P23, LA-UR-923479; J. Polchinski, What is String Theory, NSF-ITP-94-97, hep-th/9411028. [OpenAIRE]

[2] E. Witten, Nucl. Phys. B373 (1992) 187; I. Klebanov and A. Polyakov, Mod. Phys. Lett. A6 (1991) 3273; N. Chair, V. Dobrev and H. Kanno, Phys. Lett. 283 (1992) 194.

[3] I. Klebanov, Mod. Phys. Lett. A7 (1992) 723; I. Klebanov and A. Pasquinucci, Nucl. Phys. B393 (1993) 261.

[4] K. Hamada, Phys. Lett. B324 (1994) 141; Nucl. Phys. B413 (1994) 278.

[5] M. Fukuma, H. Kawai and R. Nakayama, Comm. Math. Phys. 143 (1992) 371.

[6] H. Itoyama and Y. Matsuo, Phys. Lett. B262 (1991) 233.

[7] A. Hanany, Y. Oz and R. Plesser, Nucl. Phys. B425 (1994) 150; D. Ghoshal and S. Mukhi, Nucl. Phys. B425 (1994) 173; D. Ghoshal, C. Imbimbo and S. Mukhi, “Topological 2D String Theory: Highergenus Amplitudes and W∞ Identities”, MRI-PHY/13/94, CERN-TH7458/94, TIFR/TH/39-94, hep-th/9410034; C. Imbimbo and S. Mukhi, “The Toplogical Matrix Model of c = 1 String”, CERN-TH/95-126, TIFR/TH/95-23, hep-th/9505127.

[8] A. Dhar, G. Mandal and S. Wadia, “Discrete-state Moduli of String Theory from the c = 1 Matrix Model”, CERN-TH/95-186, TIFR/TH/95-30.

[9] M. Natsuume and J. Polchinski, Nucl. Phys. B424 (1994) 137; J. Polchinski, Phys. Rev. Lett. 74 (1995) 638.

[10] K. Hamada, Phys. Lett. B300 (1993) 322; K. Hamada and A. Tsuchiya, Int. J. Mod. Phys. A8 (1993) 4897.

[11] J. Distler and H. Kawai, Nucl. Phys. B321 (1989) 509; F. David, Mod Phys. Lett. A3 (1988) 1651.

[12] N. Seiberg, Prog. Theor. Phys. Suppl. 102 (1990) 319; J. Polchinski, Proceedings of the String 1990 (Texas A& M, March 1990).

[13] J. Polchinski, Nucl. Phys. B346 (1990) 253.

[14] M. Goulian and M. Li, Phys. Rev. Lett. 66 (1991) 2051; Y. Kitazawa, Phys. Lett. B265 (1991) 262; Int. J. Mod. Phys. A7 (1992) 3403; P. DiFrancesco and D. Kutasov, Phys. Lett. B261 (1991) 385; Nucl. Phys. B375 (1992) 119; V. Dotsenko, Mod. Phys. Lett. A6 (1991) 3601; K. Aoki and E. D'Hoker, Mod. Phys. Lett. A7 (1992) 235; N. Sakai and Y. Tanii, Prog. Theor. Phys. 86 (1991) 547; S. Govindarajan, T. Jayaraman and V. John, Phys. Rev. D48 (1993) 839; S. Yamaguchi, Mod. Phys. Lett. A8 (1993) 327.

[15] A. Losev, Theor. Math. Phys. 95 (1993) 595; T. Eguchi, H. Kanno, Y. Yamada and S.-K. Yang, Phys. Lett. B305 (1993) 235.

19 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue