publication . Preprint . 2017

A Global Bayesian Analysis of Neutrino Mass Data

Caldwell, Allen; Merle, Alexander; Schulz, Oliver; Totzauer, Maximilian;
Open Access English
  • Published: 04 May 2017
Abstract
We perform a global Bayesian analysis of currently available neutrino data, putting data from oscillation experiments, neutrinoless double beta decay ($0\nu\beta\beta$), and precision cosmology on an equal footing. We evaluate the discovery potential of future $0\nu\beta\beta$ experiments and the Bayes factor of the two possible neutrino mass ordering schemes for different prior choices. We show that the indication for normal ordering is still very mild and does not strongly depend on realistic prior assumptions or different combinations of cosmological data sets. We find a wide range for $0\nu\beta\beta$ discovery potential, depending on the absolute neutrino m...
Subjects
free text keywords: High Energy Physics - Phenomenology, Astrophysics - Cosmology and Nongalactic Astrophysics, High Energy Physics - Experiment
Funded by
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
,
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
Download from
38 references, page 1 of 3

[2] A. Gando et al. (KamLAND-Zen), Phys. Rev. Lett. 117, 082503 (2016), [Addendum: Phys. Rev. Lett.117,no.10,109903(2016)], arXiv:1605.02889 [hep-ex].

[3] J. B. Albert et al. (EXO-200), Nature 510, 229 (2014), arXiv:1402.6956 [nucl-ex].

[4] M. Agostini et al., (2017), 10.1038/nature21717, [Nature544,47(2017)], arXiv:1703.00570 [nucl-ex].

[5] M. Gerbino, M. Lattanzi, O. Mena, and K. Freese, (2016), arXiv:1611.07847 [astro-ph.CO].

[6] F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri, and A. Palazzo, (2017), arXiv:1703.04471 [hepph].

[7] F. Simpson, R. Jimenez, C. Pena-Garay, and L. Verde, (2017), arXiv:1703.03425 [astro-ph.CO].

[8] T. Schwetz, K. Freese, M. Gerbino, E. Giusarma, S. Hannestad, M. Lattanzi, O. Mena, and S. Vagnozzi, (2017), arXiv:1703.04585 [astro-ph.CO].

[9] M. Schervish, The American Statistician 50, 203 (1996), http://dx.doi.org/10.1080/00031305.1996.10474380.

[10] J. Neyman, Synthese 36, 97 (1977).

[11] S. Davidson, G. Isidori, and A. Strumia, Phys. Lett. B646, 100 (2007), arXiv:hep-ph/0611389 [hep-ph].

[12] A. Caldwell, D. Kollar, and K. Kroninger, Computer Physics Communications 180, 2197 (2009), arXiv:0808.2552 [physics.data-an].

[13] M. Lindner, A. Merle, and W. Rodejohann, Phys. Rev. D73, 053005 (2006), arXiv:hep-ph/0512143 [hep-ph].

[14] A. Merle and W. Rodejohann, Phys. Rev. D73, 073012 (2006), arXiv:hep-ph/0603111 [hep-ph].

[15] W. Maneschg, A. Merle, and W. Rodejohann, Europhys. Lett. 85, 51002 (2009), arXiv:0812.0479 [hep-ph].

[16] M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys. Suppl. 83, 1 (1985).

38 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue