publication . Article . Preprint . 2006

Semiclassical limit of the FZZT Liouville theory

Leszek Hadasz; Zbigniew Jaskólski;
Open Access
  • Published: 21 Mar 2006 Journal: Nuclear Physics B, volume 757, pages 233-258 (issn: 0550-3213, Copyright policy)
  • Publisher: Elsevier BV
Abstract
Comment: 27 pages, 2 figures
Persistent Identifiers
Subjects
free text keywords: Nuclear and High Energy Physics, High Energy Physics - Theory, Conjecture, Quantum, Upper half-plane, Physics, Correlation function (quantum field theory), Mathematical physics, Elliptic operator, Semiclassical physics, Operator (computer programming), Quantum mechanics
32 references, page 1 of 3

[1] Y. Nakayama, Liouville field theory: A decade after the revolution, Int. J. Mod. Phys. A 19 (2004) 2771 [arXiv:hep-th/0402009].

[2] J. Teschner, Remarks on Liouville theory with boundary, arXiv:hep-th/0009138.

[3] V. Fateev, A. B. Zamolodchikov and A. B. Zamolodchikov, Boundary Liouville field theory. I: Boundary state and boundary two-point function, arXiv:hep-th/0001012.

[4] A. B. Zamolodchikov and A. B. Zamolodchikov, Liouville field theory on a pseudosphere, arXiv:hep-th/0101152.

[5] B. Ponsot and J. Teschner, Boundary Liouville field theory: Boundary three point function, Nucl. Phys. B 622 (2002) 309 [arXiv:hep-th/0110244].

[6] K. Hosomichi, Bulk-boundary propagator in Liouville theory on a disc, JHEP 0111 (2001) 044 [arXiv:hep-th/0108093]. [OpenAIRE]

[7] B. Ponsot, Liouville theory on the pseudosphere: Bulk-boundary structure constant, Phys. Lett. B 588 (2004) 105 [arXiv:hep-th/0309211].

[8] J. Teschner, On the Liouville three point function, Phys. Lett. B 363 (1995) 65 [arXiv:hep-th/9507109]. [OpenAIRE]

[9] H. Dorn and H. J. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [arXiv:hep-th/9403141]. [OpenAIRE]

[10] A. B. Zamolodchikov and A. B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577. [OpenAIRE]

[17] E. Braaten, T. Curtright, G. Ghandour and C. B. Thorn, Nonperturbative Weak Coupling Analysis Of The Quantum Liouville Field Theory, Annals Phys. 153 (1984) 147.

[18] P. Menotti and E. Tonni, The tetrahedron graph in Liouville theory on the pseudosphere, Phys. Lett. B 586 (2004) 425 [arXiv:hep-th/0311234].

[19] L. A. Takhtajan, Semiclassical Liouville Theory, Complex Geometry Of Moduli Spaces, And Uniformization Of Riemann Surfaces, In *Cargese 1991, Proceedings, New symmetry principles in quantum field theory* 383-406.

[20] L. A. Takhtajan, Topics in quantum geometry of Riemann surfaces: Two-dimensional quantum gravity, published in Como Quantum Groups 1994:541-580, [arXiv:hepth/9409088]. [OpenAIRE]

[21] L. A. Takhtajan and L. P. Teo, Quantum Liouville theory in the background field formalism. I: Compact Riemann surfaces, arXiv:hep-th/0508188.

32 references, page 1 of 3
Any information missing or wrong?Report an Issue