publication . Preprint . 2003

Five-dimensional Lattice Gauge Theory as Multi-Layer World

Murata, Michika; So, Hiroto;
Open Access English
  • Published: 03 Jun 2003
Abstract
A five-dimensional lattice space can be decomposed into a number of four-dimens ional lattices called as layers. The five-dimensional gauge theory on the lattice can be interpreted as four-dimensional gauge theories on the multi-layer with interactions between neighboring layers. In the theory, there exist two independent coupling constants; $\beta_4$ controls the dynamics inside a layer and $\beta_5$ does the strength of the inter-layer interaction.We propose the new possibility to realize the continuum limit of a five-dimensional theory using four-dimensional dynamics with large $\beta_4$ and small $\beta_5$. Our result is also related to the higher dimensiona...
Subjects
free text keywords: High Energy Physics - Lattice
Related Organizations
Download from
20 references, page 1 of 2

[1] Th. Kaluza, Sitzber. Preuss. Akad. d.Wiss., K1 (1921) 966; O. Klein, Z. Phys, 37 (1926) 895.

[2] C. B. Lang, M. Pilch and B.-S. Skagerstam, Int. J. Mod. Phys. A3 (1988) 1423.

[3] H. Kawai, M. Nio and Y. Okamoto, Prog. Theor. Phys. 88 (1992) 341.

[4] S. Ejiri, J. Kubo and M. Murata, Phys. Rev. D62 (2000) 105025.

[5] S. Ejiri, S. Fujimoto and J. Kubo, Phys. Rev. D66 (2002) 036002.

[6] N. Arkani-Hamed, A.G. Cohen and H. Georgi, Phys. Rev. Lett. 86 (2001) 4757; Phys. Lett. B513 (2001) 232; hep-th/0109082.

[7] H. Cheng, C.T. Hill, S. Pokorski, and J. Wang, Phys. Rev. D64 (2001) 065007.

[8] Y. K. Fu and H.B. Nielsen, Nucl. Phys. B236 (1984) 167.

[9] A. Hulsebos, C. P. Korthals-Altes and S. Nicolis, Nucl. Phys. B450 (1995) 437.

[10] P. Dimopoulos, K. Farakos, C. P. Korthals-Altes, G. Koutsoumbas and S. Nicolis, J. High Energy Phys. 0102 (2001) 005.

[11] P. Dimopoulos, K. Farakos, A. Kehagias and G. Koutsoumbas, Nucl. Phys. B617 (2001) 237.

[12] P. Dimopoulos, K. Farakos, and S. Nicolis, Eur. Phys. J. C24 (2002) 287.

[13] P. Dimopoulos, K. Farakos and G. Koutsoumbas, Phys. Rev. D65 (2002) 074505.

[14] R. Baier, R. V. Gavai and C.B. Lang, Phys. Lett. 172B (1986) 387.

[15] I. Lee and J. Shigemitsu, Nucl. Phys. B263 (1986) 280.

20 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue