## Tilting-connected symmetric algebras

*Aihara, Takuma*;

- Subject: Mathematics - Rings and Algebras | Mathematics - Representation Theoryarxiv: Mathematics::Category Theory

- References (12) 12 references, page 1 of 2
- 1
- 2

[AH] H. Abe, M. Hoshino. On derived equivalences for selfinjective algebras, Comm. in Algebra 34 (2006), no. 12, 4441-4452.

[A] T. Aihara. Mutating Brauer trees, arXiv: 1009.3210.

[AI] T. Aihara, O. Iyama. Silting mutation in triangulated categories, arXiv: 1009.3370.

[ASS] I. Assem, D. Simson, A. Skowronski. Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory, London Mathematical Society Student Texts, 65. Cambridge University Press, Cambridge, 2006.

[B] K. Bongartz. Tilted algebras, Representations of algebras (Puebla, 1980), Lecture Notes in Math. Vol. 903. Springer, Berlin-New York, 1981, 26-38.

[H] D. Happel. Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988.

[HK] M. Hoshino, Y. Kato. Tilting complexes defined by idempotents, Comm. Algebra 30 (1), 83-100 (2002).

[HS] B. Huisgen-Zimmermann, M. Saorin. Geometry of chain complexes and outer automorphisms under derived equivalence, Trans. Amer. Math. Soc., 353, 4757-4777, 2001.

[O] T. Okuyama. Some examples of derived equivalent blocks of finite groups, preprint, 1998.

[R1] J. Rickard. Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), 436-456.

- Similar Research Results (1)
- Metrics No metrics available

- Download from

- Cite this publication