A Raikov-Type Theorem for Radial Poisson Distributions: A Proof of Kingman's Conjecture

Preprint English OPEN
Van Nguyen, Thu;
  • Subject: Mathematics - Statistics Theory

In the present paper we prove the following conjecture in Kingman, J.F.C., Random walks with spherical symmetry, Acta Math.,109, (1963), 11-53. concerning a famous Raikov's theorem of decomposition of Poisson random variables: "If a radial sum of two independent random ... View more
  • References (20)
    20 references, page 1 of 2

    [1] Bingham, N.H., Random walks on spheres, Z. Wahrscheinlichkeitstheorie Verw. Geb., 22, (1973), 169-172.

    [2] Kalenberg O., Random measures, 3rd ed. New York: Academic Press, (1983).

    [3] Kingman, J.F.C., Random walks with spherical symmetry, Acta Math., 109, (1963), 11-53.

    [4] Lukacs, E., Characteristic functions, Griffin, 1960.

    [5] Nguyen V.T, Generalized independent increments processes, Nagoya Math. J.133, (1994), 155-175.

    [6] Nguyen V.T., Generalized translation operators and Markov processes, Demonstratio Mathematica, 34 No 2, ,295-304.

    [7] Nguyen T.V., OGAWA S., Yamazato M. A convolution Approach to Mutivariate Bessel Processes, Proceedings of the 6th Ritsumeikan International Symposium on ”Stochastic Processes and Applications to Mathematical Finance”, edt. J. Akahori, S. OGAWA and S. Watanabe, World Scientific, (2006) 233-244.

    [8] Nguyen V.T., A Kingman convolution approach to Bessel processes, Probab. Math. Stat, Probab. Math. Stat. 29, fasc. 1(2009) 119-134.

    [9] Nguyen V.T., An Analogue of the L´evy-Cram´er Theorem for Multi-dimensional Rayleigh Distributions, arXiv.org, 0907.5035 math.PR

    [10] Sato K, L´evy processes and infinitely divisible distributions, Cambridge University of Press, (1999).

  • Metrics
    No metrics available
Share - Bookmark