Physical States and BRST Operators for Higher-spin $W$ Strings

Preprint English OPEN
Liu, Yu-Xiao; Wei, Shao-Wen; Zhang, Li-Jie; Ren, Ji-Rong;
(2008)

In this paper, we mainly investigate the $W_{2,s}^{M}\otimes W_{2,s}^{L}$ system, in which the matter and the Liouville subsystems generate $W_{2,s}^{M}$ and $W_{2,s}^L$ algebras respectively. We first give a brief discussion of the physical states for corresponding $W$... View more
  • References (47)
    47 references, page 1 of 5

    1. A.B. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys. 65 (1985) 1205.

    2. V.A. Fateev and A.B. Zamolodchikov, Conformal quantum field theory models in two-dimensions having Z3 symmetry, Nucl. Phys. B 280 (1987) 644.

    3. J. de Boer and T. Tjin, The Relation between Quantum W algebras and Lie algebras, Commun. Math. Phys. 160 (1994) 317, arXiv:hep-th/9302006.

    4. A. Deckmyn, R. Siebelink, W. Troost and A. Sevrin, On the Lagrangian Realization of Non-Critical W-Strings, Phys. Rev. D 51 (1995) 6970, arXiv:hep-th/9411221.

    5. A. Boresch, K. Landsteiner, W. Lerche and A. Sevrin, Superstrings from Hamiltonian Reduction, Nucl. Phys. B 436 (1995) 609, arXiv:hep-th/9408033.

    6. J.O. Madsen and E. Ragoucy, Secondary Quantum Hamiltonian Reduction, Commun. Math. Phys. 185 (1997) 509, arXiv:hep-th/9503042; J.O. Madsen and E. Ragoucy, Quantum Hamiltonian Reduction in Superspace Formalism, Nucl. Phys. B 429 (1994) 277, arXiv:hep-th/9403012.

    7. C.N. Pope , Lectures on W algebras and W gravity, arXiv:hep-th/9112076.

    8. E. Bergshoeff, C.N. Pope, L.J. Romans, E. Sezgin, X. Shen and K.S. Stelle, W∞ Gravity, Phys. Lett. B 243 (1990) 350.

    9. E. Bergshoeff, J. de Boer, M. de Roo and T. Tjin, On the Cohomology of the Noncritical W -string, Nucl. Phys. B 420 (1994) 379, arXiv:hep-th/9312185.

    10. C.N. Pope, L.J. Romans and K.S. Stelle, On W3 Strings, Phys. Lett. B 269 (1991) 287.

  • Related Organizations (4)
  • Metrics
Share - Bookmark