publication . Preprint . Article . 2010

The Helmholtz Hierarchy: Phase Space Statistics of Cold Dark Matter

Svetlin V Tassev;
Open Access English
  • Published: 01 Dec 2010
Abstract
We present a new formalism to study large-scale structure in the universe. The result is a hierarchy (which we call the "Helmholtz Hierarchy") of equations describing the phase space statistics of cold dark matter (CDM). The hierarchy features a physical ordering parameter which interpolates between the Zel'dovich approximation and fully-fledged gravitational interactions. The results incorporate the effects of stream crossing. We show that the Helmholtz hierarchy is self-consistent and obeys causality to all orders. We present an interpretation of the hierarchy in terms of effective particle trajectories.
Subjects
arXiv: Astrophysics::Cosmology and Extragalactic AstrophysicsNonlinear Sciences::Exactly Solvable and Integrable Systems
free text keywords: Astrophysics - Cosmology and Nongalactic Astrophysics, Astronomy and Astrophysics, Formalism (philosophy), Physics, Particle, Gravitation, Classical mechanics, Universe, media_common.quotation_subject, media_common, Hierarchy, Phase space, Helmholtz free energy, symbols.namesake, symbols, Statistics, Cold dark matter

[1] S. Cole, S. Hatton, D. H. Weinberg and C. S. Frenk, “Mock 2dF and SDSS galaxy redshift surveys,” Mon. Not. Roy. Astron. Soc. 300, 945C (1998) [arXiv:astro-ph/9801250].

[2] R. Angulo, C. M. Baugh, C. S. Frenk and C. G. Lacey, “The detectability of baryonic acoustic oscillations in future galaxy surveys,” Mon. Not. Roy. Astron. Soc. 383, 755 (2008) [arXiv:astro-ph/0702543].

[3] M. Crocce and R. Scoccimarro, “Memory of Initial Conditions in Gravitational Clustering,” Phys. Rev. D 73, 063520 (2006) [arXiv:astro-ph/0509419].

[4] Ya. B. Zel'Dovich, “Gravitational instability: An approximate theory for large density perturbations,” Astronomy & Astrophysics 5, 84 (1970)

[18] P. J. E. Peebles, “The large-scale structure of the universe,” Princeton University Press, (1980).

[19] P. Valageas, “A new approach to gravitational clustering: a path-integral formalism and large-N expansions,” Astron. Astrophys. 421, 23 (2004) [arXiv:astro-ph/0307008].

[20] M. Crocce, S. Pueblas and R. Scoccimarro, “Transients from Initial Conditions in Cosmological Simulations,” Mon. Not. Roy. Astron. Soc. 373, 369 (2006) [arXiv:astro-ph/0606505]. [OpenAIRE]

[21] T. Gasenzer and J. M. Pawlowski, “Functional renormalisation group approach to far-from-equilibrium quantum field dynamics,” Phys. Lett. B 670, 135 (2008) [arXiv:0710.4627] [OpenAIRE]

[22] S. Bharadwaj, “The Evolution of Correlation Functions in the Zel'dovich Approximation and its Implications for the Validity of Perturbation Theory,” Astrophys. J. 472, 1 (1996) [arXiv:astro-ph/9606121] [OpenAIRE]

[23] C. P. Ma and E. Bertschinger, “A Cosmological Kinetic Theory for the Evolution of Cold Dark Matter Halos with Substructure: Quasi-Linear Theory,” Astrophys. J. 612, 28 (2004) [arXiv:astro-ph/0311049].

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue