publication . Part of book or chapter of book . Preprint . 1996

Quantum fluids and classical determinants

Cvitanovic, Predrag; Vattay, Gabor; Wirzba, Andreas;
Open Access
  • Published: 15 Aug 1996
  • Publisher: Springer Berlin Heidelberg
Abstract
A "quasiclassical" approximation to the quantum spectrum of the Schroedinger equation is obtained from the trace of a quasiclassical evolution operator for the "hydrodynamical" version of the theory, in which the dynamical evolution takes place in the extended phase space $[q(t),p(t),M(t)] = [q_i, \partial_i S, \partial_i \partial_j S ]$. The quasiclassical evolution operator is multiplicative along the classical flow, the corresponding quasiclassical zeta function is entire for nice hyperbolic flows, and its eigenvalue spectrum contains the spectrum of the semiclassical zeta function. The advantage of the quasiclassical zeta function is that it has a larger ana...
Subjects
free text keywords: Classical mechanics, Semiclassical physics, Quantum mechanics, Schrödinger equation, symbols.namesake, symbols, Quantum fluid, Phase space, Mathematical analysis, Eigenvalues and eigenvectors, Mathematics, Multiplicative function, Riemann zeta function, Topological entropy, Nonlinear Sciences - Chaotic Dynamics
Related Organizations
Download fromView all 2 versions
http://arxiv.org/pdf/chao-dyn/...
Part of book or chapter of book
Provider: UnpayWall
http://www.springerlink.com/in...
Part of book or chapter of book
Provider: Crossref
54 references, page 1 of 4

Arnold V. I. (1978): Ordinary Differential Equations (MIT Press, Cambridge, Mass.)

Artuso R., Aurell E., Cvitanovi´c P. (1990): Recycling of strange sets: I. cycle expansions. Nonlinearity 3, 325-359 [OpenAIRE]

Berry M. V. (1981): Quantizing a Classically Ergodic System: Sinai's Billiard and the KKR Method. Ann. Phys. (N.Y.) 131, 163-216

Berry M. V., Keating J. P. (1990): A rule for quantizing chaos? J. Phys. A 23, 4839- 4849 [OpenAIRE]

Bogomolny E. B. (1992): On dynamical zeta function. CHAOS 2, 5-14 [OpenAIRE]

Bohm D. (1952): A suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Phys. Rev. 85, 166

Born M. (1926): Z. f. Physik 37, 863

Bowen R., Series C. (1979): Publ. Math. Inst. Hautes Etud. Sci. 50, 153-170

Cvitanovi´c P. (1988): Invariant measurement of strange sets in terms of cycles. Phys. Rev. Lett. 61, 2729-2733

Cvitanovi´c P., ed. (1992): Periodic Orbit Theory - theme issue, CHAOS 2, 1-158

Cvitanovi´c P., Eckhardt B., Rosenqvist P. E., Russberg G., Scherer P. (1995): Pinball Scattering, in Quantum chaos between order and disorder, Casati G. and Chirikov B. eds. (Cambridge University Press, Cambridge), 405-433

Cvitanovi´c P., Rosenqvist P. E., Rugh H. H., Vattay G. (1993): A Fredholm determinant for semi-classical quantization. CHAOS 3, 619-636 [OpenAIRE]

Cvitanovi´c P., et al., (1996): Classical and Quantum Chaos: A Cyclist Treatise, http://www.nbi.dk/˜predrag/QCcourse/

Cvitanovi´c P., Eckhardt B. (1989): Periodic-Orbit Quantization of Chaotic Systems. Phys. Rev. Lett. 63, 823-826 [OpenAIRE]

Cvitanovi´c P., Eckhardt B. (1991): Periodic orbit expansions for classical smooth flows. J. Phys. A 24, L237-L241 [OpenAIRE]

54 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Part of book or chapter of book . Preprint . 1996

Quantum fluids and classical determinants

Cvitanovic, Predrag; Vattay, Gabor; Wirzba, Andreas;