Multiplicity in difference geometry

Preprint English OPEN
Tomasic, Ivan (2011)
  • Subject: 03C60, 11G25 (Primary) 14G10, 14G15 (Secondary) | Mathematics - Algebraic Geometry

We prove a first principle of preservation of multiplicity in difference geometry, paving the way for the development of a more general intersection theory. In particular, the fibres of a \sigma-finite morphism between difference curves are all of the same size, when counted with correct multiplicities.
  • References (11)
    11 references, page 1 of 2

    [1] Surinder Singh Bedi and Jai Ram. Jacobson radical of skew polynomial rings and skew group rings. Israel J. Math., 35(4):327-338, 1980.

    [2] A. J. Berrick and M. E. Keating. An introduction to rings and modules with K-theory in view, volume 65 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2000.

    [3] Richard M. Cohn. Difference algebra. Interscience Publishers John Wiley & Sons, New YorkLondon-Sydney, 1965.

    [4] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.

    [5] Robert M. Fossum. The divisor class group of a Krull domain. Springer-Verlag, New York, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74.

    [6] Ehud Hrushovski. The elementary theory of the Frobenius automorphism. Preprint, 2004.

    [7] Yves Laszlo. Notes informelles sur la g´eom´etrie aux diff´erences. Preprint, 2005.

    [8] Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1989. Translated from the Japanese by M. Reid.

    [9] Mark Ryten and Ivan Tomaˇsi´c. ACFA and measurability. Selecta Math. (N.S.), 11(3-4):523- 537, 2005.

    [10] Ivan Tomaˇsi´c. Twisted Galois Stratification.

  • Metrics
    No metrics available
Share - Bookmark