publication . Preprint . Article . 2015

Towards a cluster structure on trigonometric zastava

Michael Finkelberg; Alexander Kuznetsov; Leonid Rybnikov; Galyna Dobrovolska;
Open Access English
  • Published: 21 Apr 2015
Abstract
Comment: Main text by M. Finkelberg, A. Kuznetsov and L. Rybnikov with an appendix by G. Dobrovolska; v3 32 pages, Proof of Proposition 4.3 corrected, Section 1.5 added; v4 33 pages, the final version to appear in Selecta Math.; v5 the published version
Subjects
arXiv: Mathematics::Algebraic Geometry
free text keywords: Mathematics - Algebraic Geometry, Mathematics - Quantum Algebra, Mathematics - Representation Theory, General Physics and Astronomy, General Mathematics, Projective line, Moduli, Moduli space, Topology, Trigonometry, Mathematics, Transversal (geometry), Algebra, Affine transformation, Arithmetic genus, Poisson manifold, Mathematical analysis
22 references, page 1 of 2

[1] R. Bezrukavnikov, M. Finkelberg, I. Mirkovi´c, Equivariant homology and K-theory of affine Grassmannians and Toda lattices, Compos. Math. 141 (2005), no. 3, 746-768. [OpenAIRE]

[2] A. Braverman, M. Finkelberg, Semi-infinite Schubert varieties and quantum K-theory of flag manifolds, J. Amer. Math. Soc. 27 (2014), 1147-1168. [OpenAIRE]

[3] A. Braverman, M. Finkelberg, Weyl modules and q-Whittaker functions, Math. Ann. 359 (2014), 45-59.

[4] A. Braverman, G. Dobrovolska, M. Finkelberg, Gaiotto-Witten superpotential and Whittaker D-modules on monopoles, arXiv:1406.6671

[5] A. Braverman, M. Finkelberg, H. Nakajima, Towards a mathematical definition of 3-dimensional N = 4 gauge theories, II, in preparation.

[6] A. Braverman, M. Finkelberg, H. Nakajima, Coulomb branches of 3d N = 4 quiver gauge theories and slices in the affine Grassmannian, in preparation. 30

[7] P. Etingof, O. Schiffmann, Lectures on quantum groups, Second edition. Lectures in Mathematical Physics. International Press, Somerville, MA (2002), xii+242 pp. [OpenAIRE]

[8] L. Faybusovich, M. Gekhtman, Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices, Phys. Lett. A 272 (2000), no. 4, 236-244. [OpenAIRE]

[9] B. Feigin, A. Odesskii, Vector bundles on Elliptic Curves and Sklyanin Algebras, Topics in quantum groups and finite-type invariants, Amer. Math. Soc. Transl. Ser. 2, 185, Amer. Math. Soc., Providence, RI (1998), 65-84.

[10] M. Finkelberg, A. Kuznetsov, N. Markarian, I. Mirkovi´c, A note on a symplectic structure on the space of G-monopoles, Commun. Math. Phys. 201 (1999), 411-421. Erratum, Commun. Math. Phys. 334 (2015), 1153-1155; arXiv:math/9803124, v6. [OpenAIRE]

[11] M. Gekhtman, M. Shapiro, A. Vainshtein, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs 167. Amer. Math. Soc., Providence, RI (2010). [OpenAIRE]

[12] M. Gekhtman, M. Shapiro, A. Vainshtein, Generalized B¨acklund-Darboux transformations for CoxeterToda flows from a cluster algebra perspective, Acta Math. 206 (2011), no. 2, 245-310. [OpenAIRE]

[13] U. Helmke, P. A. Fuhrmann, Bezoutians, Linear Algebra and its Applications 122/123/124 (1989), 1039-1097.

[14] S. Jarvis, Euclidean monopoles and rational maps, Proc. Lond. Math. Soc. (3) 77 (1998), no.1, 170-192.

[15] S. Jarvis, Construction of Euclidean monopoles, Proc. Lond. Math. Soc. (3) 77 (1998), no.1, 193-214.

22 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Article . 2015

Towards a cluster structure on trigonometric zastava

Michael Finkelberg; Alexander Kuznetsov; Leonid Rybnikov; Galyna Dobrovolska;