publication . Preprint . 2018

Non-Well-Founded Proofs for the Grzegorczyk Modal Logic

Savateev, Yury; Shamkanov, Daniyar;
Open Access English
  • Published: 03 Apr 2018
Abstract
Comment: submitted to Review of Symbolic Logic
Subjects
arXiv: Computer Science::Logic in Computer Science
free text keywords: Mathematics - Logic
Related Organizations
Download from
18 references, page 1 of 2

[1] Avron, A.: On modal systems having arithmetical interpretations, Journal of Symbolic Logic, 49, (3), 935-942, 1984

[2] Afshari, B., Leigh, G.: Cut-free completeness for modal mu-calculus, 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), Conference paper, 2017 [OpenAIRE]

[3] Baier, C., Majster-Cederbaum, M. E.: Denotational semantics in the cpo and metric approach. Theoretical Computer Science, 135, 171-220, 1994 [OpenAIRE]

[4] Borga, M., Gentilini, P.: On the Proof Theory of the Modal Logic Grz, Mathematical Logic Quarterly, 32, (10-12), 145-148, 1986

[5] van Breugel, F.: An introduction to metric semantics: operational and denotational models for programming and specfication languages, Theoretical Computer Science, 258, 1-98, 2001

[6] Dyckhoff, R., Negri, S.: A cut-free sequent system for Grzegorczyk logic, with an application to the Go¨del-McKinsey-Tarski embedding, Journal of Logic and Computation, 26, (1), 169-187, 2016

[7] Escard´o, M. H.:A metric model of PCF, Laboratory for Foundations of Computer Science, The University of Edinburgh, 1998.

[8] Fortier, J., Santocanale, L.: Cuts for circular proofs: semantics and cut-elimination, Computer Science Logic 2013 (CSL 2013), Leibniz International Proceedings in Informatics (LIPIcs), 23, 248-262, 2013

[9] Di Gianantonio, P., Miculan, M.: A Unifying Approach to Recursive and Co-recursive Definitions, Geuvers H., Wiedijk F. (eds) Types for Proofs and Programs. TYPES 2002. Lecture Notes in Computer Science, vol 2646, 148-161, 2002

[10] Iemhoff, R.: Reasoning in Circles, Tributes. Liber Amicorum Alberti. A tribute to Albert Visser., 30, 165-176, 2016

[11] Kuznetsov, S.: The Lambek Calculus with Iteration: Two Variants, Kennedy J., de Queiroz R. (eds) Logic, Language, Information, and Computation. WoLLIC 2017. Lecture Notes in Computer Science, vol 10388, 182-198, 2017

[12] Maksimova, L. L.: On Modal Grzegorczyk Logic, Fundamenta Informaticae, Topics in Logic, Philosophy and Foundations of Mathematics and Computer Science, In Recognition of Professor Andrzej Grzegorczyk, 81, (1-3), 203-210, 2008

[13] Maksimova, L. L.: The Lyndon property and uniform interpolation over the Grzegorczyk logic, Siberian Mathematical Journal, 55, (1), 118-124, 2014 [OpenAIRE]

[14] Prieß-Crampe, S.: Der Banachsche Fixpunktsatz fu¨r ultrametrische Ra¨ume, Results in Mathematics, 18, (1-2), 178-186, 1990

[15] Savateev, Y., Shamkanov, D.: Cut-Elimination for the Modal Grzegorczyk Logic via Non-well-founded Proofs, Kennedy J., de Queiroz R. (eds) Logic, Language, Information, and Computation. WoLLIC 2017. Lecture Notes in Computer Science, vol 10388, 321-335, 2017 [OpenAIRE]

18 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue