publication . Article . Preprint . 2016

FEM for time-fractional diffusion equations, novel optimal error analyses

Kassem Mustapha;
Open Access
  • Published: 18 Oct 2016 Journal: Mathematics of Computation, volume 87, pages 2,259-2,272 (issn: 0025-5718, eissn: 1088-6842, Copyright policy)
  • Publisher: American Mathematical Society (AMS)
A semidiscrete Galerkin finite element method applied to time-fractional diffusion equations with time-space dependent diffusivity on bounded convex spatial domains will be studied. The main focus is on achieving optimal error results with respect to both the convergence order of the approximate solution and the regularity of the initial data. By using novel energy arguments, for each fixed time $t$, optimal error bounds in the spatial $L^2$- and $H^1$-norms are derived for both cases: smooth and nonsmooth initial data.
Persistent Identifiers
free text keywords: Algebra and Number Theory, Applied Mathematics, Computational Mathematics, Mathematics - Numerical Analysis, Finite element method, Fractional diffusion, Mathematical analysis, Mathematics
23 references, page 1 of 2

[1] A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2013), 424-438 [OpenAIRE]

[2] H. Brunner, L. Ling and M. Yamamoto, Numerical simulations of 2D fractional subdiffusion problems, J. Comput. Phys., 229 (2010), 6613-6622

[3] J. Chen, F. Liu, Q. Liu, X. Chen, V. Anh, I. Turner and K. Burrage, Numerical simulation for the three-dimension fractional sub-diffusion equation, Appl. Math. Model., 38 (2014), 3695-3705

[4] M. Cui, Compact alternating direction implicit method for two-dimensional time fractional diffusion equation, J. Comput. Phys., 231 (2012), 2621-2633

[5] B. Jin, R. Lazarov and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal., 51 (2013), 445-466

[6] B. Jin, R. Lazarov, J. Pascal and Z. Zhou, Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion, IMA J. Numer. Anal., 35 (2015), 561- 582

[7] S. Karaa, K. Mustapha and A. K. Pani, A priori estimates of a finite element method for fractional diffusion problems by energy arguments, SIAM J. Numer. Anal., (2016)

[8] K. N. Le, W. McLean and K. Mustapha, Numerical solution of the time-fractional FokkerPlanck equation with general forcing, SIAM J. Numer. Anal., 54, 1763-1784

[9] X. Li and C. Xu, A Space-Time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108-2131

[10] Y. Lin, and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552

[11] M. Luskin and R. Rannacher, On the smoothing property of the Galerkin method for parabolic equations, SIAM J. Numer. Anal., 19 (1982), 93-113

[12] W. Mclean, Regularity of solutions to a time-fractional diffusion equation, ANZIAM J., 52 (2010), 123-138

[13] J. Murillo and S. B. Yuste, A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations, Eur. Phys. J. Special Topics, 222 (2013), 1987- 1998 [OpenAIRE]

[14] K. Mustapha, B. Abdallah and K. M. Furati, A discontinuous Pertov-Galerkin method for time-fractional diffusion equations, SIAM J. Number. Anal., 52 (2014), 2512-2529

[15] K. Mustapha and D. Sch¨otzau, Well-posedness of hp−version discontinuous Galerkin methods for fractional diffusion wave equations, IMA J. Numer. Anal., 34 (2014), 1226-1246

23 references, page 1 of 2
Any information missing or wrong?Report an Issue