The quantum equivariant cohomology of toric manifolds through mirror symmetry

Article, Preprint English OPEN
Baptista, J.M.;
(2008)
  • Related identifiers: doi: 10.1088/1126-6708/2
  • Subject: High Energy Physics - Theory | Mathematics - Differential Geometry
    arxiv: Mathematics::Algebraic Geometry | Mathematics::Commutative Algebra | High Energy Physics::Theory | Mathematics::Symplectic Geometry

Using mirror symmetry as described by Hori and Vafa, we compute the quantum equivariant cohomology ring of toric manifolds. This ring arises naturally in topological gauged sigma-models and is related to the Hamiltonian Gromov-Witten invariants of the target manifold.
  • References (14)
    14 references, page 1 of 2

    [1] J. Baptista : 'Vortex equations in abelian gauged sigma-models'; Commun. Math. Phys. 261 (2006), 161-194.

    [2] J. Baptista : 'A topological gauged sigma-model'; Adv. Theor. Math. Phys. 9 (2005), 1007-1047. J. Baptista : 'Twisting gauged non-linear sigma-models '; JHEP 0802 (2008) 096. R. Zucchini : 'Gauging the Poisson sigma model'; JHEP 0805 (2008) 018.

    [3] V. Batyrev : 'Quantum cohomology rings of toric manifolds'; Ast´erisque 218 (1993), 9-34.

    [4] K. Cieliebak, R. Gaio, I. Mundet i Riera and D. Salamon : 'The symplectic vortex equations and invariants of Hamiltonian group actions'; J. Symplectic Geom. 1 (2002), 543-645. I. Mundet i Riera and G. Tian : 'A compactification of the moduli space of twisted holomorphic maps'; arXiv: math/0404407 [math.SG].

    [5] K. Cieliebak and D. Salamon : 'Wall crossing for symplectic vortices and quantum cohomology'; Math. Ann. 335 (2006), 133-192.

    [6] R. Gaio and D. Salamon : 'Gromov-Witten invariants of symplectic quotients and adiabatic limits'; J. Symplectic Geom. 3 (2005), 55-159.

    [7] A. Givental : 'Equivariant Gromov-Witten invariants'; Internat. Math. Res. Notices (1996), 613-663. T. Coates and A. Givental : 'Quantum Riemann-Roch, Lefschetz and Serre'; Ann. of Math. (2) 165 (2007), 15-53.

    [8] A. Givental : 'A mirror theorem for toric complete intersections'; Progr. Math. 160, 141-175, Birkh¨auser Boston, Boston, 1998.

    [9] E. Gonzalez and C. Woodward : 'Area dependence in gauged Gromov-Witten theory'; arXiv: math/0811.3358.

    [10] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil and E. Zaslow : 'Mirror symmetry'; Amer. Math. Soc., Providence; Clay Mathematics Institute, Cambridge, 2003.

  • Related Organizations (5)
  • Metrics
Share - Bookmark