publication . Article . Preprint . 2011

Slow and remanent electric polarization of adsorbed BSA layer evidenced by neutron reflection

Koutsioubas, A.; Lairez, D.; Zalczer, G.; Cousin, F.;
Open Access
  • Published: 27 May 2011 Journal: Soft Matter, volume 8, page 2,638 (issn: 1744-683X, eissn: 1744-6848, Copyright policy)
  • Publisher: Royal Society of Chemistry (RSC)
Abstract
Using neutron reflectivity together with an appropriate electrochemical cell, we have studied the effects of transverse electric field on the bovine serum albumin (BSA) monolayer initially adsorbed at the interface of the aqueous solution and a conductive doped-silicon wafer. Depending on the sign of the initial potential, a second layer is adsorbed, or not, on top of the first whereas a subsequent reversal of potential has no effect. We show that this behaviour reveals the slow and remanent electric polarization of the first BSA layer. Based on the permanent dipolar structure of BSA, we suggest an analogy with dipolar glasses that may account for the slowness a...
Subjects
Medical Subject Headings: technology, industry, and agricultureinorganic chemicals
free text keywords: General Chemistry, Condensed Matter Physics, Organic chemistry, Wafer, Chemistry, Monolayer, Electric field, Polarization density, Crystallography, Neutron, Chemical physics, Dipole, Electrochemical cell, Aqueous solution, Condensed Matter - Soft Condensed Matter
32 references, page 1 of 3

[1] K. Nakanishi, T. Sakiyama, and K. Imamura, J. Biosci. Bioeng. 91, 233 (2001).

[2] W. Norde, Coll. Surf. B: Biointerfaces 61, 1 (2008).

[3] R. Azzam, P. Rigby, and J. Krueger, Phys. Med. Biol. 22, 422 (1977).

[4] M. Mura-Galelli, J. Voegel, S. Behr, E. Bres, and P. Schaaf, Proc. Natl. Acad. Sci. USA 88, 5557 (1991).

[5] C. Calonder and Y. T. ans P.R. van Tassel, Proc. Natl. Acad. Sci. USA 98, 10664 (2001).

[6] J. W. Evans, Rev. Mod. Phys. 65, 1281 (1993).

[7] G. Fadda, D. Lairez, and G. Zalczer, Phys. Rev. Lett. 103, 180601 (2009).

[8] B. W. Morrissey, L. E. Smith, R. R. Stromberg, and C. A. Fenstermaker, J. Colloid Int. Sci. 56, 557 (1976).

[9] M. Kawaguchi, K. Hayashi, and A. Takahashi, Macromolecules 21, 1016 (1988). [OpenAIRE]

[10] S. Moulton, J. Barisci, A. Bath, R. Stella, and G. Wallace, J. Colloid Int. Sci. 261, 312 (2003).

[11] D. Beaglehole, B. Webster, and S. Werner, J. Colloid Int. Sci. 202, 541 (1998).

[12] J. M. Kleijn, D. Barten, and M. A. Cohen Stuart, Langmuir 20, 9703 (2004).

[13] E. Seyrek, P. L. Dubin, C. Tribet, and E. A. Gamble, Biomacromolecules 4, 273 (2003).

[14] W. Norde and C. E. Giacomelli, Journal of Biotechnology 79, 259 (2000).

[15] F. Abeles, J. Phys. Radium 11, 307 (1950).

32 references, page 1 of 3
Abstract
Using neutron reflectivity together with an appropriate electrochemical cell, we have studied the effects of transverse electric field on the bovine serum albumin (BSA) monolayer initially adsorbed at the interface of the aqueous solution and a conductive doped-silicon wafer. Depending on the sign of the initial potential, a second layer is adsorbed, or not, on top of the first whereas a subsequent reversal of potential has no effect. We show that this behaviour reveals the slow and remanent electric polarization of the first BSA layer. Based on the permanent dipolar structure of BSA, we suggest an analogy with dipolar glasses that may account for the slowness a...
Subjects
Medical Subject Headings: technology, industry, and agricultureinorganic chemicals
free text keywords: General Chemistry, Condensed Matter Physics, Organic chemistry, Wafer, Chemistry, Monolayer, Electric field, Polarization density, Crystallography, Neutron, Chemical physics, Dipole, Electrochemical cell, Aqueous solution, Condensed Matter - Soft Condensed Matter
32 references, page 1 of 3

[1] K. Nakanishi, T. Sakiyama, and K. Imamura, J. Biosci. Bioeng. 91, 233 (2001).

[2] W. Norde, Coll. Surf. B: Biointerfaces 61, 1 (2008).

[3] R. Azzam, P. Rigby, and J. Krueger, Phys. Med. Biol. 22, 422 (1977).

[4] M. Mura-Galelli, J. Voegel, S. Behr, E. Bres, and P. Schaaf, Proc. Natl. Acad. Sci. USA 88, 5557 (1991).

[5] C. Calonder and Y. T. ans P.R. van Tassel, Proc. Natl. Acad. Sci. USA 98, 10664 (2001).

[6] J. W. Evans, Rev. Mod. Phys. 65, 1281 (1993).

[7] G. Fadda, D. Lairez, and G. Zalczer, Phys. Rev. Lett. 103, 180601 (2009).

[8] B. W. Morrissey, L. E. Smith, R. R. Stromberg, and C. A. Fenstermaker, J. Colloid Int. Sci. 56, 557 (1976).

[9] M. Kawaguchi, K. Hayashi, and A. Takahashi, Macromolecules 21, 1016 (1988). [OpenAIRE]

[10] S. Moulton, J. Barisci, A. Bath, R. Stella, and G. Wallace, J. Colloid Int. Sci. 261, 312 (2003).

[11] D. Beaglehole, B. Webster, and S. Werner, J. Colloid Int. Sci. 202, 541 (1998).

[12] J. M. Kleijn, D. Barten, and M. A. Cohen Stuart, Langmuir 20, 9703 (2004).

[13] E. Seyrek, P. L. Dubin, C. Tribet, and E. A. Gamble, Biomacromolecules 4, 273 (2003).

[14] W. Norde and C. E. Giacomelli, Journal of Biotechnology 79, 259 (2000).

[15] F. Abeles, J. Phys. Radium 11, 307 (1950).

32 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2011

Slow and remanent electric polarization of adsorbed BSA layer evidenced by neutron reflection

Koutsioubas, A.; Lairez, D.; Zalczer, G.; Cousin, F.;