publication . Preprint . 2017

Recurrence determinism and Li-Yorke chaos for interval maps

Špitalský, Vladimír;
Open Access English
  • Published: 08 Dec 2017
Recurrence determinism, one of the fundamental characteristics of recurrence quantification analysis, measures predictability of a trajectory of a dynamical system. It is tightly connected with the conditional probability that, given a recurrence, following states of the trajectory will be recurrences. In this paper we study recurrence determinism of interval dynamical systems. We show that recurrence determinism distinguishes three main types of $\omega$-limit sets of zero entropy maps: finite, solenoidal without non-separable points, and solenoidal with non-separable points. As a corollary we obtain characterizations of strongly non-chaotic and Li-Yorke (non-)...
Medical Subject Headings: animal structures
free text keywords: Mathematics - Dynamical Systems, 37E05 (Primary) 37B05, 54H20 (Secondary)
Download from
18 references, page 1 of 2

[1] A. M. Blokh. The spectral decomposition for one-dimensional maps. In Dynamics reported, pages 1-59. Springer, 1995. [OpenAIRE]

[2] J.-P. Delahaye. Fonctions admettant des cycles dordre nimporte quelle puissance de 2 et aucun autre cycle. CR Acad. Sci. Paris S´er. AB, 291(4), 1980.

[3] J. P. Eckmann, S. O. Kamphorst, and D. Ruelle. Recurrence plots of dynamical systems. Europhys. Lett., 4(9):973-977, 1987. [OpenAIRE]

[4] P. Faure and H. Korn. A new method to estimate the kolmogorov entropy from recurrence plots: its application to neuronal signals. Phys. D, 122(1):265-279, 1998.

[5] P. Faure and A. Lesne. Recurrence plots for symbolic sequences. Internat. J. Bifur. Chaos, 20(06):1731-1749, 2010. [OpenAIRE]

[6] P. Faure and A. Lesne. Estimating kolmogorov entropy from recurrence plots. In Recurrence Quantification Analysis, pages 45-63. Springer, 2015.

[7] M. Grenda´r, J. Majerova´, and V. Sˇpitalsky´. Strong laws for recurrence quantification analysis. Internat. J. Bifur. Chaos, 23(08):1350147, 2013.

[8] J. Majerova´. Correlation integral and determinism for a family of 2∞ maps. Discrete Contin. Dyn. Syst., 36(9):5067-5096, 2016.

[9] Y. B. Pesin. On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions. J. Stat. Phys., 71(3-4):529-547, 1993.

[10] S. Ramdani, F. Bouchara, J. Lagarde, and A. Lesne. Recurrence plots of discrete-time gaussian stochastic processes. Phys. D, 330:17-31, 2016. [OpenAIRE]

[11] S. Ruette. Chaos on the interval, University Lecture Series, 67. American Mathematical Society, Providence, RI, 2017.

[12] D. Schultz, S. Spiegel, N. Marwan, and S. Albayrak. Approximation of diagonal line based measures in recurrence quantification analysis. Phys. Lett. A, 379(14):997-1011, 2015.

[13] J. Sm´ıtal. Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc., 297(1):269-282, 1986.

[14] V. Sˇpitalsky´. Local correlation entropy. arXiv:1612.02592, 2016.

[15] M. Thiel, M. C. Romano, and J. Kurths. Analytical description of recurrence plots of white noise and chaotic processes. Appl. Nonlinear Dynam., 11(3):20-30, 2003.

18 references, page 1 of 2
Any information missing or wrong?Report an Issue