## Acceleration of quasi-particle modes in Bose-Einstein condensates

*Marzlin, Karl-Peter*;

*Zhang, Weiping*;

Related identifiers: doi: 10.1016/S0375-9601(98)00680-X - Subject: Condensed Matter - Statistical Mechanicsarxiv: Condensed Matter::Quantum Gases | Physics::Accelerator Physics | Condensed Matter::Other

- References (8)
[1] M. Anderson, et al., Science 269, 198 (1995); C. C. Bradley et al., Phys. Rev. Lett.75, 1687 (1995); M.-O. Mewes et al., Phys. Rev. Lett. 77, 416 (1996);

[2] D.S. Jin et al., Phys. Rev. Lett. 77, 420 (1996).

[3] D.M. Stamper-Kurn et al., MIT, preprint condmat/9801262.

[4] V.M. P´erez-Garc´ia et a;., Phys. Rev. Lett. 77, 5320 (1996); Y. Castin and R. Dum, Phys. Rev. Lett. 79, 3553 (1997); M. Edwards et al., Phys. Rev. Lett. 77, 1671 (1996).

[5] G. Baym and C.J. Pethick, Phys. Rev. Lett. 76, 6 (1996); E. Lundh, C.J. Pethick, and H. Smith, Phys. Rev. A 55, 2126 (1997).

[6] A.L. Fetter, Ann. Phys. (NY) 70, 67 (1972).

[7] The introduction of the ket |Θ0i is just a mathematical trick so that we can analyze the action of exp[±iωˆ+t] in terms of an operator acting on some Hilbert-space. |Θ0i is not an element of a Hilbert space for quasi-particle modes. Rather, Θ0(x) is interpreted as a wavefunction in the Hilbert-space L2(R) of square-integrable functions so that we can use the usual operator algebra in the form hx|Oˆ(xˆ, pˆ)|Θ0i = Oˆ(x, −i¯h∂/∂x)hx|Θ0i.

[8] D.F. Walls and G.J. Milburn, Quantum Optics, SpringerVerlag, Berlin 1994.

- Metrics No metrics available

- Download from

- Cite this publication