Profinite algebras and affine boundedness

Preprint English OPEN
Schneider, Friedrich Martin; Zumbrägel, Jens;
(2015)
  • Related identifiers: doi: 10.1016/j.aim.2016.10.001
  • Subject: Mathematics - General Topology | Mathematics - Logic | Mathematics - Rings and Algebras | 08A40, 54H13

We prove a characterization of profinite algebras, i.e., topological algebras that are isomorphic to a projective limit of finite discrete algebras. In general profiniteness concerns both the topological and algebraic characteristics of a topological algebra, whereas fo... View more
  • References (11)
    11 references, page 1 of 2

    [Bou66a] Nicolas Bourbaki. Elements of mathematics. General topology. Part 1. Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966, pp. vii+437.

    [Bou66b] Nicolas Bourbaki. Elements of mathematics. General topology. Part 2. Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966, pp. iv+363.

    [BS81] Stanley Burris and Hanamantagouda P. Sankappanavar. A course in universal algebra. Vol. 78. Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1981, pp. xvi+276.

    [Cho74] Tae Ho Choe. “Zero-dimensional compact associative distributive universal algebras”. In: Proc. Amer. Math. Soc. 42 (1974), pp. 607-613.

    [Cla+04] David M. Clark et al. “Standard topological algebras: syntactic and principal congruences and profiniteness”. In: Algebra Universalis 52.2-3 (2004), pp. 343-376.

    [Cla+08] David M. Clark et al. “The axiomatizability of topological prevarieties”. In: Adv. Math. 218.5 (2008), pp. 1604-1653.

    [Day79] Brian J. Day. “On profiniteness of compact totally disconnected algebras”. In: Bull. Austral. Math. Soc. 20.1 (1979), pp. 71-76.

    [Joh82] Peter T. Johnstone. Stone spaces. Vol. 3. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1982, pp. xxi+370.

    [Kap47] Irving Kaplansky. “Topological rings”. In: Amer. J. Math. 69 (1947), pp. 153-183.

    [Num57] Katsumi Numakura. “Theorems on compact totally disconnected semigroups and lattices”. In: Proc. Amer. Math. Soc. 8 (1957), pp. 623-626.

  • Similar Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark