Mesh Denoising based on Normal Voting Tensor and Binary Optimization

Preprint English OPEN
Yadav, S. K.; Reitebuch, U.; Polthier, K.;
  • Related identifiers: doi: 10.1109/TVCG.2017.2740384
  • Subject: Computer Science - Computer Vision and Pattern Recognition | Computer Science - Graphics | Mathematics - Differential Geometry
    acm: ComputingMethodologies_COMPUTERGRAPHICS

This paper presents a tensor multiplication based smoothing algorithm that follows a two step denoising method. Unlike other traditional averaging approaches, our approach uses an element based normal voting tensor to compute smooth surfaces. By introducing a binary opt... View more
  • References (36)
    36 references, page 1 of 4

    [1] M. Botsch, M. Pauly, C. Rossl, S. Bischoff, and L. Kobbelt, “Geometric modeling based on triangle meshes,” in ACM SIGGRAPH 2006 Courses, ser. SIGGRAPH '06. New York, NY, USA: ACM, 2006.

    [2] M. Botsch, P. Alliez, L. Kobbelt, M. Pauly, and B. Le´vy, Polygon mesh processing. Natick, Mass. A K Peters, 2010.

    [3] D. A. Field, “Laplacian smoothing and delaunay triangulations,” Communications in Applied Numerical Methods, vol. 4, no. 6, pp. 709- 712, 1988.

    [4] M. Desbrun, M. Meyer, P. Schro¨ der, and A. H. Barr, “Implicit fairing of irregular meshes using diffusion and curvature flow,” in Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH '99. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 1999, pp. 317-324.

    [5] M. Alexa, “Differential coordinates for local mesh morphing and deformation,” The Visual Computer, vol. 19, no. 2-3, pp. 105-114, 2003.

    [6] Z.-X. Su, H. Wang, and J.-J. Cao, “Mesh denoising based on differential coordinates,” in Shape Modeling and Applications, 2009. SMI 2009. IEEE International Conference on, June 2009, pp. 1-6.

    [7] O. Sorkine, “Differential representations for mesh processing,” Computer Graphics Forum, vol. 25, no. 4, pp. 789-807, 2006.

    [8] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 12, no. 7, pp. 629-639, Jul 1990.

    [9] U. Clarenz, U. Diewald, and M. Rumpf, “Anisotropic geometric diffusion in surface processing,” in Proceedings of the Conference on Visualization '00, ser. VIS '00. Los Alamitos, CA, USA: IEEE Computer Society Press, 2000, pp. 397-405.

    [10] C. L. Bajaj and G. Xu, “Anisotropic diffusion of surfaces and functions on surfaces,” ACM Trans. Graph., vol. 22, no. 1, pp. 4- 32, Jan. 2003.

  • Metrics
Share - Bookmark