Quantum Mechanics on the h-deformed Quantum Plane

Preprint English OPEN
Cho, Sunggoo;
(1998)

We find the covariant deformed Heisenberg algebra and the Laplace-Beltrami operator on the extended $h$-deformed quantum plane and solve the Schr\"odinger equations explicitly for some physical systems on the quantum plane. In the commutative limit the behaviour of a qu... View more
  • References (20)
    20 references, page 1 of 2

    [1] Aghamohammadi A 1993 The two-parametric extension of h deformation of GL(2) and the differential calculus on its quantum plane Mod. Phys. Lett. A 8 2607

    [2] Aref'eva I Ya and Volvich I V 1991 Quantum group particles and non-Archimedean geometry Phys. Lett. B 268 179

    [3] Cerchiai B L, Hinterding R, Madore J and Wess J 1998 The geometry of a qdeformed phase space, LMU Preprint 98/08, math.QA/9807123

    [4] Chari V and Pressley A 1994 A Guide to Quantum Groups (Cambridge: Cambridge University Press )

    [5] Cho S, Madore J and Park K S 1998 Noncommutative geometry of the h-deformed quantum plane J. Phys. A: Math. Gen. 31 2639

    [6] Connes A 1994 Noncommutative Geometry (New York: Academic )

    [7] Demidov E E, Manin Yu I, Mukhin E E and Zhdanovich D V 1990 Non-standard quantum deformations of GL(n) and constant solutions of the Yang-Baxter equation Prog. Theor. Phys. (Suppl.) No 102 203

    [8] Fichtmu¨ller M, Lorek A and Wess J 1996 q-deformed phase space and its lattice structure Z. Phys. C 71 533

    [9] Grosche C 1990 Separation of variables in path integrals and path integral solution of two potentials on the Poincar´e upper half-plane J. Phys. A: Math. Gen. 23 4885

    [10] Grosche C and Steiner F 1987 The path integral on the Poincar´e upper half plane and for Liouville quantum mechanics Phys. Lett. A 123 319

  • Similar Research Results (2)
  • Metrics
Share - Bookmark