publication . Other literature type . Preprint . Article . 2017

UPGMA and the normalized equidistant minimum evolution problem

Vincent Moulton; Andreas Spillner; Taoyang Wu;
  • Published: 03 Apr 2017
  • Publisher: Elsevier BV
Abstract
Comment: 29 pages, 8 figures
Subjects
free text keywords: Quantitative Biology - Populations and Evolution, Computer Science - Computational Complexity, Computer Science - Discrete Mathematics, Theoretical Computer Science, General Computer Science, Combinatorics, Equidistant, Time complexity, UPGMA, Cluster analysis, Discrete mathematics, Heuristic, Greedy algorithm, Mathematics, Arithmetic mean, Approximation algorithm
26 references, page 1 of 2

[1] P. D'haeseleer, How does gene expression clustering work?, Nature biotechnology 23 (12) (2005) 1499-1501. [OpenAIRE]

[2] R. Sokal, C. Michener, A statistical method for evaluating systematic relationships, University of Kansas Science Bulletin 38 (1958) 1409-1438.

[4] J. Felsenstein, Inferring phylogenies, Sinauer associates Sunderland, 2004.

[5] P. Legendre, L. Legendre, Numerical ecology, Vol. 24, Elsevier, 2012.

[6] W. Li, L. Fu, B. Niu, S. Wu, J. Wooley, Ultrafast clustering algorithms for metagenomic sequence analysis, Briefings in bioinformatics 13 (6) (2012) 656-668. [OpenAIRE]

[7] C. Romesburg, Cluster analysis for researchers, Lulu. com, 2004.

[8] R. Davidson, S. Sullivant, Polyhedral combinatorics of UPGMA cones, Advances in Applied Mathematics 50 (2) (2013) 327-338.

[9] O. Gascuel, M. Steel, Neighbor-Joining revealed, Molecular Biology and Evolution 23 (2006) 1997-2000.

[10] N. Saitou, M. Nei, The Neighbor-Joining method: a new method for reconstructing phylogenetictrees, Molecular Biology and Evolution 4 (1987) 406-425.

[11] A. Rzhetsky, M. Nei, Theoretical foundation of the minimum-evolution method of phylogenetic inference, Molecular Biology and Evolution 10 (1993) 1073-1095. [OpenAIRE]

[12] R. Agarwala, V. Bafna, M. Farach, M. Paterson, M. Thorup, On the approximability of numerical taxonomy (fitting distances by tree metrics), SIAM Journal on Computing 28 (1998) 1073-1085.

[13] W. Day, Computational complexity of inferring phylogenies from dissimilarity matrices, Bulletin of Mathematical Biology 49 (1987) 461-467.

[14] M. Farach, S. Kannan, T. Warnow, A robust model for finding optimal evolutionary trees, Algorithmica 13 (1995) 155-179.

[15] D. Catanzaro, The minimum evolution problem: overview and classification, Networks 53 (2009) 112-125. [OpenAIRE]

[17] S. Fiorini, G. Joret, Approximating the balanced minimum evolution problem, Operation Research Letters 40 (2012) 31-35.

26 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Other literature type . Preprint . Article . 2017

UPGMA and the normalized equidistant minimum evolution problem

Vincent Moulton; Andreas Spillner; Taoyang Wu;