publication . Preprint . 2015

$L^2$ estimates for the $\bar \partial$ operator

McNeal, Jeffery D.; Varolin, Dror;
Open Access English
  • Published: 27 Feb 2015
Abstract
This is a survey article about $L^2$ estimates for the $\bar \partial$ operator. After a review of the basic approach that has come to be called the "Bochner-Kodaira Technique", the focus is on twisted techniques and their applications to estimates for $\bar \partial$, to $L^2$ extension theorems, and to other problems in complex analysis and geometry, including invariant metric estimates and the $\bar \partial$-Neumann Problem.
Subjects
free text keywords: Mathematics - Complex Variables
Download from
23 references, page 1 of 2

[B-1996] Berndtsson, B., The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman. Ann. Inst. Fourier (Grenoble) 46 (1996), no. 4, 1083-1094. ¯

[B-2013] Berndtsson, B., L2-extension of ∂-closed forms. Illinois J. Math. 56 (2012), no. 1, 21-31 (2013). [OpenAIRE]

[B-2013] Berndtsson, B., The openness conjecture for plurisubharmonic functions. ArXiV Preprint arXiv:1305.5781. See http://arxiv.org/pdf/1305.5781.pdf [OpenAIRE]

[BO-1995] Berndtsson, B.; Ortega Cerda`, J., On interpolation and sampling in Hilbert spaces of analytic functions. J. Reine Angew. Math. 464 (1995), 109-128. [OpenAIRE]

[BS-2002] Berndtsson, B., Sibony, N., The -equation on a positive current. Invent. Math. 147 (2002), no. 2, 371-428.

[Bł-2013] Błocki, Z., Suita conjecture and the Ohsawa-Takegoshi extension theorem. Invent. Math. 193 (2013), no. 1, 149 - 158.

[Bł-2014] Błocki, Z., Cauchy-Riemann meet Monge-Ampere. Bull. Math. Sci 4 (2014), no. 3, 433-480.

[C-1984] Catlin, D. Global regularity of the ∂-Neumann problem Proc. Symp. Pure Math. 41 (1984), 39-49 ¯

[C-1986] Catlin, D. Subelliptic estimates for the ∂-Neumann problem on pseudoconvex domains Ann. of Math. 126 (1986), 131-191

[Cat-1989] Catlin, D. Estimates of invariant metrics on pseudoconvex domains of dimension two Math. Zeit. 200 (1989), 429-466

[C-2014] Cao, J*, Ohsawa-Takegoshi extension theorem for compact Ka¨hler manifolds and applications. Preprint 2014. ArXiV link: http://arxiv.org/pdf/1404.6937v1.pdf

[D'A-1982] D'Angelo, J.P. Real hypersurfaces, orders of contact, and applications Ann. of Math. 115 (1982), 615- 637

[D'A-1993] Several complex variables and the geometry of real hypersurfaces CRC press, Boca Raton (1993) ¯

[D-1982] Demailly, J.-P., Estimations L2 pour lope`rateur ∂ dun fibre´ vectoriel holomorphe semi-positif au dessus dune varie´te´ ka¨hle´rienne comple`te. Ann. Sci. Ecole Norm. Sup. 15 (1982) 457-511.

[D-2000] Demailly, J.-P., On the Ohsawa-Takegoshi-Manivel L2 extension theorem. Complex analysis and geometry (Paris, 1997), 47-82, Progr. Math., 188, Birkha¨user, Basel, 2000.

23 references, page 1 of 2
Any information missing or wrong?Report an Issue