$L^2$ estimates for the $\bar \partial$ operator

Preprint English OPEN
McNeal, Jeffery D.; Varolin, Dror;
(2015)
  • Subject: Mathematics - Complex Variables

This is a survey article about $L^2$ estimates for the $\bar \partial$ operator. After a review of the basic approach that has come to be called the "Bochner-Kodaira Technique", the focus is on twisted techniques and their applications to estimates for $\bar \partial$, ... View more
  • References (23)
    23 references, page 1 of 3

    [B-1996] Berndtsson, B., The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman. Ann. Inst. Fourier (Grenoble) 46 (1996), no. 4, 1083-1094. ¯

    [B-2013] Berndtsson, B., L2-extension of ∂-closed forms. Illinois J. Math. 56 (2012), no. 1, 21-31 (2013).

    [B-2013] Berndtsson, B., The openness conjecture for plurisubharmonic functions. ArXiV Preprint arXiv:1305.5781. See http://arxiv.org/pdf/1305.5781.pdf

    [BO-1995] Berndtsson, B.; Ortega Cerda`, J., On interpolation and sampling in Hilbert spaces of analytic functions. J. Reine Angew. Math. 464 (1995), 109-128.

    [BS-2002] Berndtsson, B., Sibony, N., The -equation on a positive current. Invent. Math. 147 (2002), no. 2, 371-428.

    [Bł-2013] Błocki, Z., Suita conjecture and the Ohsawa-Takegoshi extension theorem. Invent. Math. 193 (2013), no. 1, 149 - 158.

    [Bł-2014] Błocki, Z., Cauchy-Riemann meet Monge-Ampere. Bull. Math. Sci 4 (2014), no. 3, 433-480.

    [C-1984] Catlin, D. Global regularity of the ∂-Neumann problem Proc. Symp. Pure Math. 41 (1984), 39-49 ¯

    [C-1986] Catlin, D. Subelliptic estimates for the ∂-Neumann problem on pseudoconvex domains Ann. of Math. 126 (1986), 131-191

    [Cat-1989] Catlin, D. Estimates of invariant metrics on pseudoconvex domains of dimension two Math. Zeit. 200 (1989), 429-466

  • Metrics
Share - Bookmark