Sagan numbers

Preprint Portuguese OPEN
Mendonça, J. Ricardo G.;
(2012)
  • Subject: 00A08, 97A20, 97A90 | Mathematics - History and Overview

We define a new class of numbers based on the first occurrence of certain patterns of zeros and ones in the expansion of irracional numbers in a given basis and call them Sagan numbers, since they were first mentioned, in a special case, by the North-american astronomer... View more
  • References (26)
    26 references, page 1 of 3

    [1] C. Sagan, Contact (New York: Simon & Schuster, 1985).

    [2] B. Greene, The elegant Universe: Superstrings, hidden dimensions, and the quest for the ultimate theory (New York: Vintage, 2000).

    [3] L. Smolin, The trouble with Physics: The rise of String Theory, the fall of Science, and what comes next (Boston: Houghton-Mifflin, 2006).

    [4] T. Theoharis, G. Papaioannou, N. Platis, and N. M. Patrikalakis, Graphics and Visualization: Principles & Algorithms (Wellesley: A. K. Peters, 2008).

    [5] M. L. V. Pitteway, “Algorithm for drawing ellipses or hyperbolae with a digital plotter,” Computer J. 10 (3), 282-289 (1967).

    [6] J. R. Van Aken, “An efficient ellipse-drawing algorithm,” IEEE Comput. Graph. & Appl. 4 (9), 24-35 (1984); J. Van Aken and M. Novak, “Curve drawing algorithms for raster displays,” ACM Trans. Graph. 4 (2), 147-169 (1985).

    [7] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks & Techniques, Binary Decision Diagrams (Reading: AddisonWesley, 2009).

    [8] R. L. Grahan, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd. ed. (Reading: Addison-Wesley, 1998).

    [9] S. Lloyd, “Ultimate physical limits to computation,” Nature 406 (6799), 1047-1054 (2000); S. Lloyd, “Computational capacity of the Universe,” Phys. Rev. Lett. 88 (23), 237901 (2002); S. Lloyd, Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos (New York: Vintage, 2007).

    [10] E. Borel, “Les probabilite´s de´nombrables et leurs applications arithme´tiques,” Rend. Circ. Mat. Palermo 27 (1), 247-271 (1909). See also R. B. Ash, Real Analysis and Probability (San Diego: Academic Press, 1972), Chapter 7, problem 7.2.7(b).

  • Metrics
Share - Bookmark