Share  Bookmark

 Download from


L1(ψ)(X1, X2, X3, X4) =
[1] Doubek, M.; Markl, M.; Zima, P. Deformation theory (lecture notes). Arch. Math. (Brno) 43 (2007), no. 5, 333371
[2] Goze Nicolas. Poisson structures associated with rigid Lie algebras. Journal of Generalized Lie theory and Applications. Vol 10. (2010).
[3] Goze Nicolas, Elisabeth Remm. Dimension theorem for Free (3)ary partially associative algebras and applications. Preprint Mulhouse 2010.
[4] Goze, Michel; Remm, Elisabeth. Valued deformations of algebras. J. Algebra Appl. 3 (2004), no. 4, 345365.
[5] Goze Michel, Remm Elisabeth. Poisson algebras in terms of nonassociative algebras. J. Algebra 320 (2008), no. 1, 294317.
[6] Goze Michel, Remm Elisabeth. A class of nonassociative algebras. Algebra Colloq. 14 (2007), no. 2, 313326.
[7] Goze Michel, Elisabeth Remm. A class of nonassociative algebras including flexible and alternative algebras, operads and deformations. arXiv:0910.0700
[8] Markl Martin, Remm Elisabeth. Algebras with one operation including Poisson and other Lieadmissible algebras. J. Algebra 299 (2006), no. 1, 171189.
[9] Markl Martin, Remm Elisabeth. Non)Koszulity of operads for nary algebras, cohomology and deformations. arXiv:math.RA 0907.