On the irrationality of Ramanujan's mock theta functions and other q-series at an infinite number of points

Preprint English OPEN
Mingarelli, Angelo B.;
(2007)
  • Subject: Mathematics - Classical Analysis and ODEs | Mathematics - Number Theory | 11J72

We show that all of Ramanujan's mock theta functions of order 3, Watson's three additional mock theta functions of order 3, the Rogers-Ramanujan q-series, and 6 mock theta functions of order 5 take on irrational values at the points q=\pm 1/2,\pm 1/3,\pm 1/4,...
  • References (13)
    13 references, page 1 of 2

    Φ(p/q) = −1 +

    [1] G.Andrews, On the theorems of Watson and Dragonette for Ramanujan's mock theta functions, Amer. J. Math. 88 (1966), 454-490

    [2] G.Cantor, U¨ber die einfachen Zahlensysteme, Zeit. fu¨r Math. und Phys. 14, (1869), 121-128

    [3] D. Hickerson, A proof of the mock theta conjectures, Invent. Math. 94 (1988), 639-660

    [4] P.H.Diananda and A.Oppenheim, Criteria for irrationality of certain classes of numbers,II, Amer. Math. Monthly 62 (4), (1955), 222-225

    [5] G.Gasper and M.Rahman, Basic Hypergeometric Series, Second Edition, Cambridge University Press, Cambridge (2004), xxvi, 428p

    [6] J.Hanˇcl and R.Tijdeman, On the irrationality of Cantor series, J. reine angew. Math. (Crelle), 571 (2004), 145-158

    [7] G.H.Hardy and E.M.Wright, An Introduction to the Theory of Numbers, Fourth Edition, Oxford University Press, Oxford, London, (1960)

    [8] T. Matala-Aho and K. Va¨a¨na¨nen, On diophantine approximations of mock theta functions of third order, Ramanujan J., 4 (2000), 13-28.

    [9] T. Matala-Aho, On irrationality measures of P l = 0∞dl/ Ql1(1 + dj + d2j s), J. Number Theory, 128 (2008), 1-16.

  • Metrics
Share - Bookmark