Exact PostSelection Inference for Changepoint Detection and Other Generalized Lasso Problems

Subject: Statistics  Methodologyarxiv: Statistics::Computation

References
(31)
Arnold, T. & Tibshirani, R. J. (2016), 'Efficient implementations of the generalized lasso dual path algorithm', Journal of Computational and Graphical Statistics 25(1), 127.
Bai, J. (1999), 'Likelihood ratio tests for multiple structural changes', Journal of Econometrics 91(2), 299323.
Berk, R., Brown, L., Buja, A., Zhang, K. & Zhao, L. (2013), 'Valid postselection inference', Annals of Statistics 41(2), 802837.
Brodsky, B. & Darkhovski, B. (1993), Nonparametric Methods in ChangePoint Problems, Springer, Netherlands.
Chambolle, A. & Darbon, J. (2009), 'On total variation minimization and surface evolution using parametric maximum flows', International Journal of Computer Vision 84, 288307.
Chen, J. & Chen, Z. (2008), 'Extended Bayesian information criteria for model selection with large model spaces', Biometrika 95(3), 759771.
Choi, Y., Taylor, J. & Tibshirani, R. (2014), Selecting the number of principal components: estimation of the true rank of a noisy matrix. arXiv: 1410.8260.
Eckley, I., Fearnhead, P. & Killick, R. (2011), Analysis of changepoint models, in D. Barber, T. Cemgil & S. Chiappa, eds, 'Bayesian Time Series Models', Cambridge University Press, Cambridge, chapter 10, pp. 205224.
Fithian, W., Sun, D. & Taylor, J. (2014), Optimal inference after model selection. arXv: 1410.2597.
Fithian, W., Taylor, J., Tibshirani, R. & Tibshirani, R. J. (2015), Selective sequential model selection. arXiv: 1512.02565.

Related Research Results
(1)
Inferred
Efficient Implementations of the Generalized Lasso Dual Path Algorithm (2015) 51% 
Metrics
No metrics available

 Download from


Cite this publication