publication . Preprint . 2017

Total Ionizing Dose Effects on Threshold Switching in 1T-Tantalum Disulfide Charge-Density-Wave Devices

Liu, G.; Zhang, E. X.; Liang, C. D.; Bloodgood, M. A.; Salguero, T. T.; Fleetwood, D. M.; Balandin, A. A.;
Open Access English
  • Published: 18 Oct 2017
Abstract
The 1T polytype of TaS2 exhibits voltage-triggered threshold switching as a result of a phase transition from nearly commensurate to incommensurate charge density wave states. Threshold switching, persistent above room temperature, can be utilized in a variety of electronic devices, e.g., voltage controlled oscillators. We evaluated the total-ionizing-dose response of thin film 1T-TaS2 at doses up to 1 Mrad(SiO2). The threshold voltage changed by less than 2% after irradiation, with persistent self-sustained oscillations observed through the full irradiation sequence. The radiation hardness is attributed to the high intrinsic carrier concentration of 1T-TaS2 in ...
Subjects
free text keywords: Physics - Applied Physics, Condensed Matter - Mesoscale and Nanoscale Physics
Download from
35 references, page 1 of 3

A. H. Johnston, “Radiation effects in advanced microelectronics technologies,” IEEE Trans. Nucl. Sci., vol. 45, no. 3, pp. 1339-1354, Jun. 1998. DOI:10.1109/23.685206.

Dodd, P. Paillet, V. Ferlet-Cavrois, “Radiation effects in MOS oxides,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 1833-1853, Aug.

2008. DOI: 10.1109/TNS.2008.2001040.

D. M. Fleetwood, “Total ionizing dose effects in MOS and lowdose-rate-sensitive linear-bipolar devices,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 1706-1730, Jun. 2013. DOI: 10.1109/TNS.2013.2259260.

H. L. Hughes and J. M. Benedetto, “Radiation effects and hardening of MOS technology: devices and circuits,” IEEE Trans. Nucl. Sci., vol. 50, no. 3, pp. 500-521, Jun. 2003. DOI: 10.1109/TNS.2003.812928.

Nucl. Sci., vol. 50, no. 3, pp. 522-538, Jun. 2003. DOI: 10.1109/TNS.2003.812930.

T. R. Weatherford and W. T. Anderson, “Historical perspective on radiation effects in III-V devices,” IEEE Trans. Nucl. Sci., vol. 50, no. 3, pp. 704-710, Jun. 2003. DOI: 10.1109/TNS.2003.813124.

C. Barnes and L. Selva, “Radiation effects in MMIC devices,” in GaAs MMIC Reliability Assurance Guideline for Space Applications, R. Kayali, S; Ponchak, G; Shaw, Ed. JPL Publication, 1996, pp. 203-243.

Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotechnol., vol. 7, pp.

699-712, Oct. 2012. DOI:10.1038/nnano.2012.193.

A. Balandin, “A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature,” Nature Nanotechnol., vol. 11, no.

10, pp. 845-850, Oct. 2016. DOI:10.1038/nnano.2016.108.

A. Khitun, G. Liu, and A. A. Balandin, “Two-dimensional oscillatory neural network based on room temperature chargedensity-wave devices,” IEEE Trans. Nanotechnol., accepted, 2017, available on line: DOI: 10.1109/TNANO.2017.2716845. [OpenAIRE]

R. Inada, Y. Onuki, S. Tanuma, Y. Ōnuki, and S. Tanuma, “Hall effect of 1T-TaS2 and 1T-TaSe2,” Physica, vol. 99, no. 1-4, pp.

188-192, Jan. 1980. DOI: 10.1016/0378-4363(80)90230-2.

35 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue