Minimally Naturalistic Artificial Intelligence

Preprint English OPEN
Hansen, Steven Stenberg;
(2017)
  • Subject: Computer Science - Artificial Intelligence

The rapid advancement of machine learning techniques has re-energized research into general artificial intelligence. While the idea of domain-agnostic meta-learning is appealing, this emerging field must come to terms with its relationship to human cognition and the sta... View more
  • References (7)

    [1] Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE transactions on evolutionary computation, 1(1), 67-82.

    [2] Minsky, M. L., Singh, P., & Sloman, A. (2004). The St. Thomas common sense symposium: designing architectures for human-level intelligence. AI Magazine, 25(2), 113.

    [3] Mikolov, T., Joulin, A., & Baroni, M. (2015). A roadmap towards machine intelligence. arXiv preprint arXiv:1511.08130.

    [4] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.

    [5] Loftin, R., Peng, B., MacGlashan, J., Littman, M. L., Taylor, M. E., Huang, J., & Roberts, D. L. (2016). Learning behaviors via human-delivered discrete feedback: modeling implicit feedback strategies to speed up learning. Autonomous Agents and Multi-Agent Systems, 30(1), 30-59.

    [6] Ullman, T., Baker, C., Macindoe, O., Evans, O., Goodman, N., & Tenenbaum, J. B. (2009). Help or hinder: Bayesian models of social goal inference. In Advances in neural information processing systems (pp. 1874-1882).

    [7] Branavan, S. R. K., Silver, D., & Barzilay, R. (2011, June). Learning to win by reading manuals in a MonteCarlo framework. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1 (pp. 268-277). Association for Computational Linguistics.

  • Related Organizations (1)
  • Metrics
Share - Bookmark