publication . Article . Preprint . 2018

Catalysis by Metallic Nanoparticles in Solution: Thermosensitive Microgels as Nanoreactors

Rafael Roa; Stefano Angioletti-Uberti; Yan Lu; Joachim Dzubiella; Francesco Piazza; Matthias Ballauff;
Open Access English
  • Published: 07 Feb 2018 Journal: Zeitschrift für Physikalische Chemie, volume 232, issue 5-6, pages 773-803 (issn: 0942-9352, eissn: 2196-7156, Copyright policy)
  • Publisher: Walter de Gruyter GmbH
Metallic nanoparticles have been used as catalysts for various reactions, and the huge literature on the subject is hard to overlook. In many applications, the nanoparticles must be affixed to a colloidal carrier for easy handling during catalysis. These "passive carriers" (e.g., dendrimers) serve for a controlled synthesis of the nanoparticles and prevent coagulation during catalysis. Recently, hybrids from nanoparticles and polymers have been developed that allow us to change the catalytic activity of the nanoparticles by external triggers. In particular, single nanoparticles embedded in a thermosensitive network made from poly(N-isopropylacrylamide) (PNIPAM) ...
Persistent Identifiers
free text keywords: Physical and Theoretical Chemistry, Physics - Chemical Physics, Condensed Matter - Materials Science, Inhouse research on structure dynamics and function of matter, Science & Technology, Physical Sciences, Chemistry, Physical, reduction, thermosensitive network, SPHERICAL POLYELECTROLYTE BRUSHES, DENDRIMER-ENCAPSULATED NANOPARTICLES, CORE-SHELL PARTICLES, GOLD NANOPARTICLES, PALLADIUM NANOPARTICLES, PLATINUM NANOPARTICLES, 4-NITROPHENOL REDUCTION, PD NANOPARTICLES, RESPONSIVE NANOREACTORS, NITROPHENOL REDUCTION, Chemical Physics, 0306 Physical Chemistry (incl. Structural), 0307 Theoretical and Computational Chemistry, [ PHYS ] Physics [physics], Colloid, Solvent, Metal nanoparticles, Polymer, chemistry.chemical_classification, chemistry, Catalysis, Dendrimer, Nanoreactor, Materials science, Nanoparticle, Nanotechnology
Funded by
Multiscale modelling of stimuli-responsive nanoreactors
  • Funder: European Commission (EC)
  • Project Code: 646659
  • Funding stream: H2020 | ERC | ERC-COG
Validated by funder
62 references, page 1 of 5

(16) Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis. Acc. Chem. Res. 2001, 34 (3), 181-190.

(17) Anderson, R. M.; Yancey, D. F.; Zhang, L.; Chill, S. T.; Henkelman, G.; Crooks, R. M. A Theoretical and Experimental Approach for Correlating Nanoparticle Structure and Electrocatalytic Activity. Acc. Chem. Res. 2015. [OpenAIRE]

(18) Deraedt, C.; Pinaud, N.; Astruc, D. Recyclable Catalytic Dendrimer Nanoreactor for Partper-Million Cu(I) Catalysis Of “click” chemistry in Water. J. Am. Chem. Soc. 2014, 136 (34), 12092-12098. [OpenAIRE]

(19) Esumi, K.; Miyamoto, K.; Yoshimura, T. Comparison of PAMAM-Au and PPI-Au Nanocomposites and Their Catalytic Activity for Reduction of 4-Nitrophenol. J. Colloid Interface Sci. 2002, 254 (2), 402-405.

(20) Nemanashi, M.; Meijboom, R. Synthesis and Characterization of Cu, Ag and Au Dendrimer-Encapsulated Nanoparticles and Their Application in the Reduction of 4- Nitrophenol to 4-Aminophenol. J. Colloid Interface Sci. 2013, 389 (1), 260-267. [OpenAIRE]

(21) Bingwa, N.; Meijboom, R. Kinetic Evaluation of Dendrimer-Encapsulated Palladium Nanoparticles in the 4-Nitrophenol Reduction Reaction. J. Phys. Chem. C 2014, 118 (34), 19849-19858. [OpenAIRE]

(22) Bingwa, N.; Meijboom, R. Evaluation of Catalytic Activity of Ag and Au DendrimerEncapsulated Nanoparticles in the Reduction of 4-Nitrophenol. J. Mol. Catal. A Chem. 2015, 396, 1-7. [OpenAIRE]

(23) Noh, J.-H.; Meijboom, R. Catalytic Evaluation of Dendrimer-Templated Pd Nanoparticles in the Reduction of 4-Nitrophenol Using Langmuir-Hinshelwood Kinetics. Appl. Surf. Sci. 2014, 320, 400-413. [OpenAIRE]

(24) Noh, J.-H.; Meijboom, R. Synthesis and Catalytic Evaluation of Dendrimer-Templated and Reverse Microemulsion Pd and Pt Nanoparticles in the Reduction of 4-Nitrophenol: The Effect of Size and Synthetic Methodologies. Appl. Catal. A Gen. 2015, 497, 107-120. [OpenAIRE]

(25) Pozun, Z. D.; Rodenbusch, S. E.; Keller, E.; Tran, K.; Tang, W.; Stevenson, K. J.; Henkelman, G. A Systematic Investigation of P-Nitrophenol Reduction by Bimetallic Dendrimer Encapsulated Nanoparticles. J. Phys. Chem. C. Nanomater. Interfaces 2013, 117 (15), 7598-7604. [OpenAIRE]

(26) Johnson, J. A.; Makis, J. J.; Marvin, K. A.; Rodenbusch, S. E.; Stevenson, K. J. SizeDependent Hydrogenation of P- Nitrophenol with Pd Nanoparticles Synthesized with Poly(amido)amine Dendrimer Templates. J. Phys. Chem. C 2013, 117 (44), 22644-22651.

(27) Calvo, A.; Fuertes, M. C.; Yameen, B.; Williams, F. J.; Azzaroni, O.; Soler-Illia, G. J. A. A. Nanochemistry in Confined Environments: Polyelectrolyte Brush-Assisted Synthesis of Gold Nanoparticles inside Ordered Mesoporous Thin Films. Langmuir 2010, 26 (8), 5559-5567.

2007, pp 1135-1151.

Cao, J.; Mei, S.; Jia, H.; Ott, A.; Ballauff, M.; Lu, Y. In Situ Synthesis of Catalytic Active Au Nanoparticles onto Gibbsite-Polydopamine Core-Shell Nanoplates. Langmuir 2015, 31 (34), 9483-9491.

Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Thermosensitive Core-Shell Particles as Carriers for Ag Nanoparticles: Modulating the Catalytic Activity by a Phase Transition in Networks. Angew. Chemie - Int. Ed. 2006, 45, 813-816.

62 references, page 1 of 5
Any information missing or wrong?Report an Issue