Lithium evolution in metal-poor stars: from Pre-Main Sequence to the Spite plateau

Preprint English OPEN
Fu, Xiaoting ; Bressan, Alessandro ; Molaro, Paolo ; Marigo, Paola (2015)
  • Subject: Astrophysics - Solar and Stellar Astrophysics
    arxiv: Astrophysics::Galaxy Astrophysics | Astrophysics::Cosmology and Extragalactic Astrophysics | Astrophysics::Earth and Planetary Astrophysics | Astrophysics::Solar and Stellar Astrophysics

Lithium abundance derived in metal-poor main sequence stars is about three times lower than the value of primordial Li predicted by the standard Big Bang nucleosynthesis when the baryon density is taken from the CMB or the deuterium measurements. This disagreement is generally referred as the lithium problem. We here reconsider the stellar Li evolution from the pre-main sequence to the end of the main sequence phase by introducing the effects of convective overshooting and residual mass accretion. We show that $^7$Li could be significantly depleted by convective overshooting in the pre-main sequence phase and then partially restored in the stellar atmosphere by a tail of matter accretion which follows the Li depletion phase and that could be regulated by EUV photo-evaporation. By considering the conventional nuclear burning and microscopic diffusion along the main sequence we can reproduce the Spite plateau for stars with initial mass $m_0=0.62 - 0.80 M_{\odot}$, and the Li declining branch for lower mass dwarfs, e.g, $m_0=0.57 - 0.60 M_{\odot}$, for a wide range of metallicities (Z=0.00001 to Z=0.0005), starting from an initial Li abundance $A({\rm Li}) =2.72$. This environmental Li evolution model also offers the possibility to interpret the decrease of Li abundance in extremely metal-poor stars, the Li disparities in spectroscopic binaries and the low Li abundance in planet hosting stars.
  • References (40)
    40 references, page 1 of 4

    Adams, T. F. 1976, A&A, 50, 461A Alongi M., Bertelli G., Bressan A. et al., 1991, A&A, 224, 95

    Anders E., & Grevesse N. 1989 GeCoA, 53,197 Aoki W., Ito H., & Tajitsu A. 2012, ApJL, 751, L6 Bodenheimer, P. H. 2011, (Springer Heidelberg Dordrecht London New York), 146

    Bressan A., Chiosi C., Bertelli G. 1981, A&A, 102, 25 Bressan A., Girardi L., Marigo P., et al., 2014, preprint (arXiv: 1409.2268)

    Bressan A., Marigo P., Girardi L., et al. 2012, MNRAS, 427, 127

    Bressan A., Marigo P., Girardi L., et al. 2013, EPJWC, 43, 3001

    Bonifacio F., & Molaro P. 1997 MNRAS, 285, 847 Bonifacio P., Caffau E., Spite M., et al., 2015, preprint (arXiv: 1504.05963)

    Coc A. et al., 2014, preprint (arXiv: 1403.6694) Coc A., Goriely S., Xu Y., et al. 2012, ApJ, 744, 158 Christensen-Dalsgaard J., Monteiro M. J. P. F. G., Rempel M., et al. 2011 MNRAS, 414, 1158 Clarke C.J., Gendrin A., & Sotomayor M. 2001 MNRAS, 328, 485

    Charbonnel C. & Primas F. 2005, A&A, 442, 961 Cunha K., Smith V.V., & Lambert D. 1995, ApJ, 452, 634 Caffau E., et al. 2011, Nature, 477, 67 Cyburt R. H., Amthor A. M., Ferguson R., et al., 2010, ApJS, 189, 240

    Chaboyer B., Fenton W., Nelan J., et al. 2001, ApJ, 562, 521

    Dullemond, C. P., Hollenbach, D., Kamp, I., & DâĂŹAlessio, P. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson, AZ: Univ. Arizona Press), 555

  • Metrics
    No metrics available
Share - Bookmark