Iron Intercalation in Covalent-Organic Frameworks: A Promising Approach for Semiconductors

Preprint English OPEN
Pakhira, Srimanta ; Lucht, Kevin P. ; Mendoza-Cortes, Jose L. (2017)
  • Subject: Condensed Matter - Materials Science

Covalent-organic frameworks (COFs) are intriguing platforms for designing functional molecular materials. Here, we present a computational study based on van der Waals dispersion-corrected hybrid density functional theory (DFT-D) to design boroxine-linked and triazine-linked COFs intercalated with Fe. Keeping the original $P-6m2$ symmetry of the pristine COF (COF-Fe-0), we have computationally designed seven new COFs by intercalating Fe atoms between two organic layers. The equilibrium structures and electronic properties of both the pristine and Fe-intercalated COF materials are investigated here. We predict that the electronic properties of COFs can be fine tuned by adding Fe atoms between two organic layers in their structures. Our calculations show that these new intercalated-COFs are promising semiconductors. The effect of Fe atoms on the electronic band structures and density of states (DOSs) has also been investigated using the aforementioned DFT-D method. The contribution of the $d$-subshell electron density of the Fe atoms plays an important role in improving the semiconductor properties of these new materials. These intercalated-COFs provide a new strategy to create semi-conducting materials within a rigid porous network in a highly controlled and predictable manner.
  • References (49)
    49 references, page 1 of 5

    (1) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Designed Synthesis of 3D Covalent Organic Frameworks. Science 2007, 316, 268-272.

    (2) Klontzas, E.; Tylianakis, E.; Froudakis, G. E. Designing 3D COFs with Enhanced Hydrogen Storage Capacity. Nano Lett. 2010, 10, 452-454.

    (3) Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; KloÌĹck, C.; O'Keeffe, M.; Yaghi, O. M. A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework. J. Am. Chem. Soc. 2009, 131, 4570-4571.

    (4) Feldblyum, J. I.; Mccreery, C. H.; Andrews, S. C.; Kurosawa, T.; Santos, E. J. G.; Duong, V.; Fang, L.; Ayzner, A. L.; Bao, Z. Few-layer, Large-area, 2D Covalent Organic Framework Semiconductor Thin Films. Chem. Commun. 2015, 51, 13894-13897.

    (5) Cote, A. P.; Benin, A. I.; Ockwig, N. W.; Keeffe, M. O.; Matzger, A. J.; Yaghi, O. M. Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310, 1166-1171.

    (6) Mendoza-Cortes, J. L.; Goddard, W. A.; Furukawa, H.; Yaghi, O. M. A Covalent Organic Framework that Exceeds the DOE 2015 Volumetric Target for H2 Uptake at 298 K. J. Phys. Chem. Lett. 2012, 3, 2671-2675.

    (7) Mendoza-Cortes, J. L.; Han, S. S.; Furukawa, H.; Yaghi, O. M.; Goddard, W. A. Adsorption Mechanism and Uptake of Methane in Covalent Organic Frameworks: Theory and Experiment. J. Phys. Chem. A 2010, 114, 10824-10833.

    (8) Pramudya, Y.; Mendoza-Cortes, J. L. Design Principles for High H2 Storage Using Chelation of Abundant Transition Metals in Covalent Organic Frameworks for 0 - 700 bar at 298 K. J. Am. Chem. Soc. 2016, 138, 15204-15213.

    (9) Furukawa, H.; Yaghi, O. M. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc. 2009, 131, 8875-8883.

    (10) Soo Han, S.; Mendoza-Corte, J.; Goddard III, W. A. Recent Advances on Simulation and Theory of Hydrogen Storage in Metal-organic Frameworks and Covalent Organic Frameworks. Chem. Soc. Rev 2009, 38, 1460-1476.

  • Related Research Results (2)
  • Metrics
    No metrics available
Share - Bookmark