General Rotational Surfaces in Pseudo-Euclidean 4-Space with Neutral Metric

Preprint English OPEN
Aleksieva, Yana; Milousheva, Velichka; Turgay, Nurettin Cenk;
(2016)

We define general rotational surfaces of elliptic and hyperbolic type in the pseudo-Euclidean 4-space with neutral metric which are analogous to the general rotational surfaces of C. Moore in the Euclidean 4-space. We study Lorentz general rotational surfaces with plane... View more
  • References (16)
    16 references, page 1 of 2

    [1] Aksoyak F., Yayli Y., General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space E42. Indian J. Pure Appl. Math., 46, no. 1 (2015), 107-118.

    [2] Aleksieva Y., Ganchev G., Milousheva V., On the theory of Lorentz surfaces with parallel normalized mean curvature vector field in pseudo-Euclidean 4-space. J. Korean Math. Soc., 53, (2016).

    [3] Bekta¸s B., Canfes E., Dursun U., On rotational surfaces in pseudo-Euclidean space Et4 with pointwise 1-type Gauss map. ArXiv 1508.03294v1.

    [4] Chen B.-Y., Surfaces with parallel normalized mean curvature vector. Monatsh. Math., 90, no. 3 (1980), 185-194.

    [5] Chen B.-Y., Pseudo-Riemannian geometry, δ-invariants and applications. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.

    [6] Dursun U., On spacelike rotational surfaces with pointwise 1-type Gauss map. Bull. Korean Math. Soc., 52, no. 1 (2015), 301-312.

    [7] Dursun U., Turgay N., General rotational surfaces in Euclidean space E4 with pointwise 1-type Gauss map. Math. Commun., 17 (2012), 71-81.

    [8] Dursun U., Turgay N., Minimal and pseudo-umbilical rotational surfaces in Euclidean space E4. Mediterr. J. Math. 10, no. 1 (2013), 497-506.

    [9] Ganchev G., Milousheva V., Invariants of lines on surfaces in R4. C. R. Acad. Bulgare Sci., 63, no. 6 (2010), 835-842.

    [10] Ganchev G., Milousheva V., Quasi-minimal rotational surfaces in pseudo-Euclidean four-dimensional space. Cent. Eur. J. Math., 12, no. 10 (2014), 1586-1601.

  • Metrics
Share - Bookmark