publication . Other literature type . Article . Preprint . 2016

Controlling open quantum systems: tools, achievements, and limitations.

Koch, Christiane P.;
  • Published: 02 Jun 2016
  • Publisher: IOP Publishing
Abstract
The advent of quantum devices, which exploit the two essential elements of quantum physics, coherence and entanglement, has sparked renewed interest in the control of open quantum systems. Successful implementations face the challenge to preserve the relevant nonclassical features at the level of device operation. A major obstacle is decoherence which is caused by interaction with the environment. Optimal control theory is a tool that can be used to identify control strategies in the presence of decoherence. We review here recent advances in optimal control methodology that allow for tackling typical tasks in device operation for open quantum systems and discuss...
Subjects
free text keywords: General Materials Science, Condensed Matter Physics, Implementation, Obstacle, Physics, Quantum, Distributed computing, Optimal control, Quantum entanglement, Exploit, Quantum decoherence, Coherence (physics), Quantum Physics
191 references, page 1 of 13

[1] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. K¨ockenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbru¨ggen, et al., Eur. Phys. J. D 69 (2015).

[2] D. D'Alessandro, Introduction to Quantum Control and Dynamics (Chapman & Hall/CRC, 2007).

[3] M. Shapiro and P. Brumer, Quantum Control of Molecular Processes (Wiley Interscience, 2012), 2nd ed.

[4] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Wiley, New York, 1962).

[5] V. F. Krotov, Global Methods in Optimal Control (Marcel Dekker, New York, 1996).

[6] S. Conolly, D. Nishimura, and A. Macovski, IEEE Trans. Med. Imaging MI-5, 106 (1986). [OpenAIRE]

[7] J. Mao, T. H. Mareci, K. N. Scott, and E. Andrew, J. Magn. Reson. 70, 310 (1986).

[8] D. Tannor and S. Rice, J. Chem. Phys. 83, 5013 (1985).

[9] A. P. Peirce, M. A. Dahleh, and H. Rabitz, Phys. Rev. A 37, 4950 (1988).

[10] R. Kosloff, S. Rice, P. Gaspard, S. Tersigni, and D. Tannor, Chem. Phys. 139, 201 (1989).

[11] D. Tannor, V. Kazakov, and V. Orlov, in Timedependent quantum molecular dynamics, edited by J. Broeckhove and L. Lathouwers (Plenum, 1992), pp. 347-360.

[12] P. Gross, D. Neuhauser, and H. Rabitz, J. Chem. Phys. 96, 2834 (1992).

[13] J. Somlo´i, V. A. Kazakovski, and D. J. Tannor, Chem. Phys. 172, 85 (1993).

[14] A. Assion, T. Baumert, X. Bergt, T. Brixner, X. Kiefer, V. Seyfried, X. Strehle, and G. Gerber, Science 282, 919 (1998).

[15] R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992).

191 references, page 1 of 13
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue