On Associative Conformal Algebras of Linear Growth

Preprint English OPEN
Retakh, Alexander (2000)
  • Subject: Mathematics - Rings and Algebras | 16P90, 17B69 | Mathematics - Quantum Algebra
    arxiv: Quantitative Biology::Biomolecules

Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conforma... View more
  • References (15)
    15 references, page 1 of 2

    [Bl] R.Block, Determination of the differentiably simple rings with a minimal ideal, Ann. of Math. 90 (1969), 433-459.

    [Bo] R.Borcherds, Vertex Algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. USA 83 (1986), 3068-3071.

    [DK] A.D'Andrea, V.Kac, Structure theory of finite conformal algebras, Selecta Math. 4 (1998), 377-418.

    [H] I.Herstein, Noncommutative Rings, Carus Mathematical Monographs, 15, MAA, 1968.

    [K1] V.Kac, Vertex Algebra for Beginners, 2nd ed.(1 ed., 1996), AMS, 1998.

    [K2] V.Kac, Formal distribution algebras and conformal algebras, XIIth International Congress of Mathematical Physics (ICMP'97) (Brisbane), Int. Press, 1999, pp. 80-97.

    [KL] G.Krause, T.Lenagan, Growth of Algebras and Gelfand-Kirillov Dimension, Pitman Adv. Publ. Program, 1985.

    [Li] H.-S.Li, Local systems of vertex operators, vertex superalgebras and modules, J.Pure Appl. Algebra 109 (1996), 143-195.

    [Po] E.Posner, Differentiably simle rings, Proc. Amer. Math. Soc. 11 (1960), 337-343.

    [R] L.Rowen, Ring Theory, Academic Press, 1989.

  • Metrics
    No metrics available
Share - Bookmark