On Associative Conformal Algebras of Linear Growth
- Published: 25 May 2000
[Bl] R.Block, Determination of the differentiably simple rings with a minimal ideal, Ann. of Math. 90 (1969), 433-459.
[Bo] R.Borcherds, Vertex Algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. USA 83 (1986), 3068-3071.
[DK] A.D'Andrea, V.Kac, Structure theory of finite conformal algebras, Selecta Math. 4 (1998), 377-418.
[H] I.Herstein, Noncommutative Rings, Carus Mathematical Monographs, 15, MAA, 1968.
[K1] V.Kac, Vertex Algebra for Beginners, 2nd ed.(1 ed., 1996), AMS, 1998.
[K2] V.Kac, Formal distribution algebras and conformal algebras, XIIth International Congress of Mathematical Physics (ICMP'97) (Brisbane), Int. Press, 1999, pp. 80-97.
[KL] G.Krause, T.Lenagan, Growth of Algebras and Gelfand-Kirillov Dimension, Pitman Adv. Publ. Program, 1985.
[Li] H.-S.Li, Local systems of vertex operators, vertex superalgebras and modules, J.Pure Appl. Algebra 109 (1996), 143-195.
[Po] E.Posner, Differentiably simle rings, Proc. Amer. Math. Soc. 11 (1960), 337-343. [OpenAIRE]
[R] L.Rowen, Ring Theory, Academic Press, 1989.
[Ro] M.Roitman, On free conformal and vertex algebras, J. Algebra 217 (1999), no. 2, 496-527.
[SSW] L.Small, J.T.Stafford, R.Warfield, Affine algebras of Gelfand-Kirillov dimension one are PI, Math. Proc. Cambridge Phil. Soc. 97 (1985), no. 3, 407-414.
[SW] L.Small, R.Warfield, Prime affine algebras of Gel'fand-Kirillov dimension one, J. Algebra 91 (1984), no. 2, 386-389. [OpenAIRE]
D.Wright, On the Jacobian conjecture, Illinois J. Math 25, no. 3, 423-440.
Department of Mathematics, Yale University, New Haven, CT, 06520 E-mail address: retakh@math.yale.edu