publication . Part of book or chapter of book . Preprint . 2019

Fisher-Rao Regularized Transport Analysis of the Glymphatic System and Waste Drainage

Saad Nadeem; Rena Elkin; Helene Benveniste; Hedok Lee; Allen Tannenbaum;
Open Access
  • Published: 05 Feb 2019
  • Publisher: Springer International Publishing
Abstract
Comment: To appear in MICCAI 2020
Subjects
free text keywords: Physics - Fluid Dynamics, Quantitative Biology - Quantitative Methods, Eulerian path, symbols.namesake, symbols, Schrödinger's cat, Lagrangian analysis, Applied mathematics, Drainage, Mass transport, Glymphatic system, Computer science, Regularization (mathematics), Visualization
Funded by
NIH| MOUSE GENETICS
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 2P30CA008748-43
  • Funding stream: NATIONAL CANCER INSTITUTE
,
NIH| Glymphatic function in a transgenic rat model of Alzheimer's disease
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5R01AG048769-04
  • Funding stream: NATIONAL INSTITUTE ON AGING
,
NIH| Dose-distribution radiomics to predict morbidity risk in radiotherapy
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5R01CA198121-02
  • Funding stream: NATIONAL CANCER INSTITUTE
Download fromView all 2 versions
http://arxiv.org/pdf/1902.0731...
Part of book or chapter of book
Provider: UnpayWall
http://link.springer.com/conte...
Part of book or chapter of book . 2020
Provider: Crossref
41 references, page 1 of 3

[1] J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the monge-kantorovich mass transfer problem. Numerische Mathematik, 84:375-393, 2000. 1, 3, 6 [OpenAIRE]

[2] C. Benedict, L. Byberg, J. Cedernaes, P. S. Hogenkamp, V. Giedratis, L. Kilander, L. Lind, L. Lannfelt, and H. B. Schio¨th. Self-reported sleep disturbance is associated with alzheimer's disease risk in men. Alzheimer's & Dementia, 11(9):1090-1097, 2015. 1

[3] H. Benveniste, H. Lee, F. Ding, Q. Sun, E. Al-Bizri, R. Makaryus, S. Probst, M. Nedergaard, E. A. Stein, and H. Lu. Anesthesia with dexmedetomidine and low-dose isoflurane increases solute transport via the glymphatic pathway in rat brain when compared with high-dose isoflurane. Anesthesiology: The Journal of the American Society of Anesthesiologists, 127(6):976-988, 2017. 1, 6

[4] Y. Brenier. Polar factorization and monotone rearrangement of vectorvalued functions. Communications on pure and applied mathematics, 44(4):375-417, 1991. 2 [OpenAIRE]

[5] G. Buttazzo, C. Jimenez, and E. Oudet. An optimization problem for mass transportation with congested dynamics. SIAM Journal on Control and Optimization, 48(3):1961-1976, 2009. 1

[6] L. A. Caffarelli. The regularity of mappings with a convex potential. Journal of the American Mathematical Society, 5(1):99-104, 1992. 2, 3 [OpenAIRE]

[7] Y. Chen, T. T. Georgiou, and M. Pavon. On the relation between optimal transport and Schro¨dinger bridges: A stochastic control viewpoint. Journal of Optimization Theory and Applications, 169(2):671-691, 2016. 1, 3, 4

[8] L. Chizat, G. Peyre, B. Schmitzer, F-X. Vialard, Unbalanced optimal transport: dynamic and Kantorovich formulations. Journal of Functional Analysis, 274:30903123, 2018. 4 [OpenAIRE]

[9] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in neural information processing systems, pages 2292-2300, 2013. 2, 4 [OpenAIRE]

[10] R. Elkin, S. Nadeem, E. Haber, K. Steklova, H. Lee, H. B. Benveniste, and A. Tannenbaum. Glymphvis: Visualizing glymphatic transport pathways using regularized optimal transport. MICCAI 2018, 2018. 1, 3, 5, 6

[11] L. C. Evans. Partial differential equations and monge-kantorovich mass transfer. Current Developments in Mathematics, 1997(1):65-126, 1997. 2, 3

[12] L. C. Evans and W. Gangbo. Differential equations methods for the Monge-Kantorovich mass transfer problem, volume 653. American Mathematical Soc., 1999. 2, 3

[13] W. Gangbo and R. J. McCann. Optimal maps in monge's mass transport problem. Comptes Rendus de l'Academie des Sciences-Serie I-Mathematique, 321(12):1653, 1995. 2

[14] W. Gangbo and R. J. McCann. The geometry of optimal transportation. Acta Mathematica, 177(2):113-161, 1996. 2 [OpenAIRE]

[15] E. Garyfallidis, M. Brett, M. M. Correia, G. B. Williams, and I. NimmoSmith. Quickbundles, a method for tractography simplification. Frontiers in Neuroscience, 6:175, 2012. 6

41 references, page 1 of 3
Any information missing or wrong?Report an Issue