## Nonlinear stability for the Maxwell--Born--Infeld system on a Schwarzschild background

*Pasqualotto, Federico*;

- Subject: General Relativity and Quantum Cosmology | Mathematics - Analysis of PDEs

- References (39)
F (L, L), σ := V1,...,Vm1∈V∪ no W1,...,Wk∈V∪ X V1,...,Vm1∈V∪ no W1,...,Wk∈V∪ X V1,...,Vm1∈V∪ no W1,...,Wk∈V∪ X + C + C

[1] Lars Andersson and Pieter Blue. Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior. arXiv:1310.2664, 2013.

[2] Lars Andersson and Pieter Blue. Hidden symmetries and decay for the wave equation on the Kerr spacetime. Ann. Math. (2), 182(3):787-853, 2015.

[3] I. Bialynicki-Birula. Nonlinear Electrodynamics: variations on a theme by Born and Infeld. 1984.

[4] Pieter Blue. Decay of the Maxwell field on the Schwarzschild manifold. J. Hyperbolic Differ. Equ., 5(4):807-856, 2008.

[5] Pieter Blue and Jacob Sterbenz. Uniform Decay of Local Energy and the Semi-Linear Wave Equation on Schwarzschild Space. Communications in Mathematical Physics, 268(2):481-504, 2006.

[6] Guy Boillat. Nonlinear Electrodynamics: Lagrangians and Equations of Motion. Journal of Mathematical Physics, 11(3):941-951, mar 1970.

[7] Max Born. Modified field equations with a finite radius of the electron. Nature, 132:282, 1933.

[8] Curtis G. Callan, Jr. and Juan M. Maldacena. Brane Dynamics From the Born-Infeld Action. Nuclear Physics B, 513(1- 2):16, 1997.

[9] Demetrios Christodoulou. The action principle and partial differential equations, volume 146 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2000.

- Similar Research Results (7)
- Metrics No metrics available

- Download from

- Cite this publication