Nonlinear stability for the MaxwellBornInfeld system on a Schwarzschild background

Subject: General Relativity and Quantum Cosmology  Mathematics  Analysis of PDEs

References
(39)
F (L, L), σ := V1,...,Vm1∈V∪ no W1,...,Wk∈V∪ X V1,...,Vm1∈V∪ no W1,...,Wk∈V∪ X V1,...,Vm1∈V∪ no W1,...,Wk∈V∪ X + C + C
[1] Lars Andersson and Pieter Blue. Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior. arXiv:1310.2664, 2013.
[2] Lars Andersson and Pieter Blue. Hidden symmetries and decay for the wave equation on the Kerr spacetime. Ann. Math. (2), 182(3):787853, 2015.
[3] I. BialynickiBirula. Nonlinear Electrodynamics: variations on a theme by Born and Infeld. 1984.
[4] Pieter Blue. Decay of the Maxwell field on the Schwarzschild manifold. J. Hyperbolic Differ. Equ., 5(4):807856, 2008.
[5] Pieter Blue and Jacob Sterbenz. Uniform Decay of Local Energy and the SemiLinear Wave Equation on Schwarzschild Space. Communications in Mathematical Physics, 268(2):481504, 2006.
[6] Guy Boillat. Nonlinear Electrodynamics: Lagrangians and Equations of Motion. Journal of Mathematical Physics, 11(3):941951, mar 1970.
[7] Max Born. Modified field equations with a finite radius of the electron. Nature, 132:282, 1933.
[8] Curtis G. Callan, Jr. and Juan M. Maldacena. Brane Dynamics From the BornInfeld Action. Nuclear Physics B, 513(1 2):16, 1997.
[9] Demetrios Christodoulou. The action principle and partial differential equations, volume 146 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2000.

Similar Research Results
(6)

Metrics
No metrics available

 Download from


Cite this publication