On VC-density over indiscernible sequences

Preprint English OPEN
Guingona, Vincent ; Hill, Cameron Donnay (2011)
  • Subject: Mathematics - Logic | 03C45

In this paper, we study VC-density over indiscernible sequences (denoted VC_ind-density). We answer an open question in [1], showing that VC_ind-density is always integer valued. We also show that VC_ind-density and dp-rank coincide in the natural way.
  • References (18)
    18 references, page 1 of 2

    [1] M. Aschenbrenner, A. Dolich, D. Haskell, H.D. MacPherson, and S. Starchenko, Vapnik-Chervonenkis density in some theories without the independence property, I. preprint.

    [2] M. Bodirsky, New Ramsey classes from old (2012). preprint.

    [3] A. Dolich, J. Goodrick, and D. Lippel, dp-Minimality: Basic facts and examples, Notre Dame J. Form. Log. 52 (2011), no. 3, 267-288.

    [4] V. Guingona, On uniform definability of types over finite sets, J. Symbolic Logic 77 (2012), no. 2, 499-514.

    [5] V. Guingona and M.C. Laskowski, On VC-minimal theories and variants, Archive for Mathematical Logic. to appear.

    [6] C.D. Hill, Generalized indiscernibles as model-complete theories (2012). preprint.

    [7] H. Johnson, Vapnik-Chervonenkis density on indiscernible sequences, stability, and the maximum property (2013). preprint.

    [8] I. Kaplan, A. Onshuus, and A. Usvyatsov, Additivity of the dp-rank. preprint.

    [9] A. S. Kechris, V. G. Pestov, and S. Todorcevic, Fraisse limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal. 1 (2005), 106-189.

    [10] M.C. Laskowski, Vapnik-Chervonenkis Classes of Definable Sets, J. London Math. Soc. 45 (1992), no. 2, 377-384.

  • Metrics
    No metrics available
Share - Bookmark