publication . Preprint . 2005

Kneser-Hecke-operators in coding theory

Nebe, Gabriele;
Open Access English
  • Published: 21 Sep 2005
The Kneser-Hecke-operator is a linear operator defined on the complex vector space spanned by the equivalence classes of a family of self-dual codes of fixed length. It maps a linear self-dual code $C$ over a finite field to the formal sum of the equivalence classes of those self-dual codes that intersect $C$ in a codimension 1 subspace. The eigenspaces of this self-adjoint linear operator may be described in terms of a coding-theory analogue of the Siegel $\Phi $-operator.
free text keywords: Mathematics - Number Theory, 94B05, 11F60
Download from
20 references, page 1 of 2

[1] C. Bachoc, On harmonic weight enumerators of binary codes, Designs, Codes, and Cryptography 18 (1999), 11-28

[2] C. Bachoc, Harmonic weight enumerators of non-binary codes and MacWilliams identities, in Codes and association schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 56, Amer. Math. Soc., Providence, RI, 2001; pp. 1-23 [OpenAIRE]

[3] M. Brou´e, Codes correcteurs d'erreurs auto-orthogonaux sur le corps `a deux ´el´ements et formes quadratiques enti`eres d´efinies positives `a discriminant +1. Discrete Math. 17 (1977), no. 3, 247-269.

[4] J. Cannon et al., The Magma Computational Algebra System Algebra, Number Theory and Geometry, published electronically

[5] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, New York, 1998, 3rd. ed. 1998.

[6] M. Hentschel and A. Krieg, A Hermitian analog of the Schottky form. In Automorphic forms and zeta functions - Proceedings of the conference in memory of Tsuneo Arakawa - World Scientific, 2006.

[7] M. Kneser, Klassenzahlen definiter quadratischer Formen, Archiv der Math. 8 (1957), 241-250.

[8] W. Kohnen and R. Salvati Manni, Linear relations between theta series, Osaka J. Math. 41 (2004), 353-356. [OpenAIRE]

[9] G. Nebe, Finite Weil-representations and associated Hecke-algebras. submitted (2006).

[10] G. Nebe, H.-G. Quebbemann, E. M. Rains and N. J. A. Sloane, Complete weight enumerators of generalized doubly-even self-dual codes, Finite Fields Applic., 10 2004, 540-550.

[11] G. Nebe, E. M. Rains and N. J. A. Sloane, The invariants of the Clifford groups, Designs, Codes, and Cryptography 24 (2001), 99-121.

[12] G. Nebe, E. M. Rains and N. J. A. Sloane, Codes and invariant theory, Math. Nachrichten, 274-275 (2004), 104-116.

[13] G. Nebe, E. M. Rains and N. J. A. Sloane, Self-dual codes and invariant theory. Springer-Verlag (2006). [OpenAIRE]

[14] G. Nebe and M. Teider, Hecke actions on certain strongly modular genera of lattices. Archiv der Math., 84 (1) (2005) 46-56. [OpenAIRE]

[15] G. Nebe and B. B. Venkov, On Siegel modular forms of weight 12, J. Reine Angew. Math. 531 (2001), 49-60. [OpenAIRE]

20 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue