27 references, page 1 of 2
[1] I. Daubechies, A. Grossmann, and Y. Meyer, “Painless nonorthogonal expansions,” J. Math. Phys., vol. 27, no. 5, pp. 1271-1283, 1986. [Online]. Available: http://dx.doi.org.ezproxy.lib.uh.edu/10.1063/1.527388
[2] N. Strawn, “Optimization over finite frame varieties and structured dictionary design,” Appl. Comput. Harmon. Anal., vol. 32, no. 3, pp. 413-434, 2012. [Online]. Available: http://dx.doi.org.ezproxy.lib.uh.edu/10.1016/j.acha.2011.09.001 [OpenAIRE]
[3] R. Vale and S. Waldron, “Tight frames and their symmetries,” Constr. Approx., vol. 21, no. 1, pp. 83-112, 2005. [Online]. Available: http://dx.doi.org.ezproxy.lib.uh.edu/10.1007/s00365-004-0560-y [4]
[5] V. K. Goyal, M. Vetterli, and N. T. Thao, “Quantized overcomplete expansions in RN : analysis, synthesis, and algorithms,” IEEE Trans. Inform. Theory, vol. 44, no. 1, pp. 16-31, 1998. [Online]. Available: http://dx.doi.org.ezproxy.lib.uh.edu/10.1109/18.650985 [OpenAIRE]
[6] R. B. Holmes and V. I. Paulsen, “Optimal frames for erasures,” Linear Algebra Appl., vol. 377, pp. 31-51, 2004. [Online]. Available: http://dx.doi.org.ezproxy.lib.uh.edu/10.1016/j.laa.2003.07.012
[7] G. Zauner, Quantendesigns - Grundzu¨ge einer nichtkommutativen Designtheorie, 1999, dissertation (Ph.D.)-University Wien (Austria).
[8] A. J. Scott and M. Grassl, “Symmetric informationally complete positive-operator-valued measures: a new computer study,” J. Math. Phys., vol. 51, no. 4, pp. 042 203, 16, 2010. [Online]. Available: http://dx.doi.org.ezproxy.lib.uh.edu/10.1063/1.3374022
[9] T. Strohmer and R. W. Heath, Jr., “Grassmannian frames with applications to coding and communication,” Appl. Comput. Harmon. Anal., vol. 14, no. 3, pp. 257-275, 2003. [Online]. Available: http://dx.doi.org.ezproxy.lib.uh.edu/10.1016/S1063-5203(03)00023-X [OpenAIRE]
[10] I. S. Dhillon, R. W. Heath, Jr., T. Strohmer, and J. A. Tropp, “Constructing packings in Grassmannian manifolds via alternating projection,” Experiment. Math., vol. 17, no. 1, pp. 9-35, 2008. [Online]. Available: http://projecteuclid.org.ezproxy.lib.uh.edu/euclid.em/1227031894
[11] D. Mixon, C. Quinn, N. Kiyavash, and M. Fickus, “Equiangular tight frame fingerprinting codes,” in Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, May 2011, pp. 1856-1859. [OpenAIRE]
[12] M. Fickus and D. G. Mixon, “Tables of the existence of equiangular tight frames,” arXiv e-print, arXiv:1504.00253, 04 2015. [Online]. Available: http://arxiv.org/abs/1504.00253 [OpenAIRE]
[13] L. R. Welch, “Lower bounds on the maximum cross correlation of signals,” IEEE Trans. on Information Theory, vol. 20, no. 3, pp. 397-9, May 1974.
[14] B. Bodmann and J. Haas, “Frame potentials and the geometry of frames,” Journal of Fourier Analysis and Applications, pp. 1-40, 2015. [Online]. Available: http://dx.doi.org/10.1007/s00041-015-9408-z
[15] J. J. Benedetto and J. D. Kolesar, “Geometric properties of Grassmannian frames for R2 and R3,” EURASIP J. Appl. Signal Process., vol. 2006, pp. 1-17, 2006.
[16] J. Haantjes, “Equilateral point-sets in elliptic two- and three-dimensional spaces,” Nieuw Arch. Wiskunde (2), vol. 22, pp. 355-362, 1948.
27 references, page 1 of 2