publication . Preprint . Article . 2017

CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

Omar Roldan;
Open Access English
  • Published: 29 Aug 2017
Abstract
We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instance, facilitate the search for primordial non-Gaussianity in future works. It also disentangles the non-linear ISW from other effects. Finally, we provide a method which can ...
Subjects
arXiv: Astrophysics::Cosmology and Extragalactic Astrophysics
free text keywords: Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Astrophysics of Galaxies, General Relativity and Quantum Cosmology, Physics - Space Physics, Astronomy and Astrophysics, Perturbation theory, Theoretical physics, Cosmic microwave background, Anisotropy, Scalar (physics), Classical mechanics, Physics, Logarithm, Nonlinear system, Tensor, Direct consequence
43 references, page 1 of 3

[1] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XX. Constraints on inflation, arXiv:1502.02114.

[2] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, arXiv:1502.01592.

[3] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13, [arXiv:1502.01589].

[4] R. K. Sachs and A. M. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J. 147 (1967) 73-90. [Gen. Rel. Grav.39,1929(2007)].

[5] U. Seljak, Gravitational lensing effect on cosmic microwave background anisotropies: A Power spectrum approach, Astrophys. J. 463 (1996) 1, [astro-ph/9505109].

[6] M. Zaldarriaga and U. Seljak, Gravitational lensing effect on cosmic microwave background polarization, Phys. Rev. D58 (1998) 023003, [astro-ph/9803150]. [OpenAIRE]

[7] W. Hu and A. Cooray, Gravitational time delay effects on cosmic microwave background anisotropies, Phys. Rev. D63 (2001) 023504, [astro-ph/0008001].

[8] A. Challinor and F. van Leeuwen, Peculiar velocity effects in high resolution microwave background experiments, Phys.Rev. D65 (2002) 103001, [astro-ph/0112457].

[9] L. Amendola, R. Catena, I. Masina, A. Notari, M. Quartin, et al., Measuring our peculiar velocity on the CMB with high-multipole off-diagonal correlations, JCAP 1107 (2011) 027, [arXiv:1008.1183]. [OpenAIRE]

[10] M. J. Rees and D. W. Sciama, Large scale Density Inhomogeneities in the Universe, Nature 217 (1968) 511-516. [OpenAIRE]

[11] R. G. Crittenden and N. Turok, Looking for Lambda with the Rees-Sciama effect, Phys. Rev. Lett. 76 (1996) 575, [astro-ph/9510072]. [OpenAIRE]

[12] S. Mollerach and S. Matarrese, Cosmic microwave background anisotropies from second order gravitational perturbations, Phys. Rev. D56 (1997) 4494-4502, [astro-ph/9702234]. [OpenAIRE]

[13] T. Pyne and M. Birkinshaw, Null geodesics in perturbed space-times, Astrophys. J. 415 (1993) 459, [astro-ph/9303020]. [OpenAIRE]

[14] T. Pyne and S. M. Carroll, Higher order gravitational perturbations of the cosmic microwave background, Phys. Rev. D53 (1996) 2920-2929, [astro-ph/9510041].

[15] L. Boubekeur, P. Creminelli, G. D'Amico, J. Norena, and F. Vernizzi, Sachs-Wolfe at second order: the CMB bispectrum on large angular scales, JCAP 0908 (2009) 029, [arXiv:0906.0980]. [OpenAIRE]

43 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Article . 2017

CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

Omar Roldan;