publication . Preprint . 2017

TensorFlow Distributions

Dillon, Joshua V.; Langmore, Ian; Tran, Dustin; Brevdo, Eugene; Vasudevan, Srinivas; Moore, Dave; Patton, Brian; Alemi, Alex; Hoffman, Matt; Saurous, Rif A.;
Open Access English
  • Published: 28 Nov 2017
The TensorFlow Distributions library implements a vision of probability theory adapted to the modern deep-learning paradigm of end-to-end differentiable computation. Building on two basic abstractions, it offers flexible building blocks for probabilistic computation. Distributions provide fast, numerically stable methods for generating samples and computing statistics, e.g., log density. Bijectors provide composable volume-tracking transformations with automatic caching. Together these enable modular construction of high dimensional distributions and transformations not possible with previous libraries (e.g., pixelCNNs, autoregressive flows, and reversible resid...
free text keywords: Computer Science - Learning, Computer Science - Artificial Intelligence, Computer Science - Programming Languages, Statistics - Machine Learning
Download from
51 references, page 1 of 4

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015). h ps:// Software available from

[2] Nathanel L Ackerman, Cameron E Freer, and Daniel M Roy. 2016. Exchangeable random primitives. In Workshop on Probabilistic Programming Semantics. 2016.

[3] David J Aldous. 1985. Exchangeability and related topics. In École d'Été de Probabilités de Saint-Flour XIII-1983. Springer, 1- 198.

[4] Anonymous. 2017. Generative Models for Data Efficiency and Alignment in Language. OpenReview (2017).

[5] Justin Bayer and Christian Osendorfer. 2014. Learning Stochastic Recurrent Networks. (2014). arXiv:1411.7610v3

[6] Richard A Becker and John M Chambers. 1984. S: an interactive environment for data analysis and graphics. CRC Press.

[7] David M Blei and John Lafferty. 2006. Correlated topic models. In Neural Information Processing Systems.

[8] G. E. P. Box and Mervin E. Muller. 1958. A Note on the Generation of Random Normal Deviates. The Annals of Mathematical Statistics (1958), 610-611. [OpenAIRE]

[9] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2016. Stan: a probabilistic programming language. Journal of Statistical Software (2016).

[10] Bob Carpenter, Matthew D Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and Michael Betancourt. 2015. The Stan math library: Reverse-mode automatic differentiation in C++. arXiv preprint arXiv:1509.07164 (2015).

[11] Thomas M Cover and Joy A Thomas. 1991. Elements of Information Theory. Wiley Series in Telecommunications and Signal Processing.

[12] Imre Csiszár. 1963. Eine informationstheoretische Ungleichung und ihre Anwendung auf Beweis der Ergodizitaet von Markoffschen Ketten. Magyer Tud. Akad. Mat. Kutato Int. Koezl. 8 (1963), 85-108.

[13] Bradley Efron and Robert J Tibshirani. 1994. An introduction to the bootstrap. CRC press. [OpenAIRE]

[14] M.C. Fu. 2006. Simulation. Handbook in Operations Research and Management Science, Vol. 13. North Holland.

[15] Dario Garcia-Garcia and Robert C Williamson. 2012. Divergences and risks for multiclass experiments. In Conference on Learning Theory.

51 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue