Pitfalls and Best Practices in Algorithm Configuration

Preprint English OPEN
Eggensperger, Katharina; Lindauer, Marius; Hutter, Frank;
(2017)
  • Subject: Computer Science - Artificial Intelligence | Computer Science - Software Engineering

Good parameter settings are crucial to achieve high performance in many areas of artificial intelligence (AI), such as propositional satisfiability solving, AI planning, scheduling, and machine learning (in particular deep learning). Automated algorithm configuration me... View more
  • References (62)
    62 references, page 1 of 7

    Aigner, M., Biere, A., Kirsch, C., Niemetz, A., & Preiner, M. (2013). Analysis of portfolio-style parallel SAT solving on current multi-core architectures. In Proceeding of the Fourth International Workshop on Pragmatics of SAT (POS'13).

    Ansotegui, C., Gabas, J., Malitsky, Y., & Sellmann, M. (2016). Maxsat by improved instance-speci c algorithm con guration. Artif. Intell., 235, 26{39.

    Ansotegui, C., Malitsky, Y., Sellmann, M., & Tierney, K. (2015). Model-based genetic algorithms for algorithm con guration. In Yang, Q., & Wooldridge, M. (Eds.), Proceedings of the 25th International Joint Conference on Arti cial Intelligence (IJCAI'15), pp. 733{739.

    Ansotegui, C., Sellmann, M., & Tierney, K. (2009). A gender-based genetic algorithm for the automatic con guration of algorithms. In Gent, I. (Ed.), Proceedings of the Fifteenth International Conference on

    Audemard, G., & Simon, L. (2009). Predicting learnt clauses quality in modern SAT solvers. In Boutilier, C. (Ed.), Proceedings of the 22th International Joint Conference on Arti cial Intelligence (IJCAI'09), pp. 399{404.

    Bayless, S., Tompkins, D., & Hoos, H. (2014). Evaluating instance generators by con guration. In Pardalos, P., & Resende, M. (Eds.), Proceedings of the Eighth International Conference on Learning and Intelligent Optimization (LION'14), Lecture Notes in Computer Science. Springer-Verlag.

    Bezerra, L., Lopez-Iban~ez, M., & Stutzle, T. (2016). Automatic component-wise design of multiobjective evolutionary algorithms. IEEE Trans. Evolutionary Computation, 20 (3), 403{417.

    Biere, A. (2013). Lingeling, Plingeling and Treengeling entering the SAT competition 2013. In Balint, A., Belov, A., Heule, M., & Jarvisalo, M. (Eds.), Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions, Vol. B-2013-1 of Department of Computer Science Series of Publications B, pp. 51{52. University of Helsinki.

    Biere, A. (2014). Yet another local search solver and Lingeling and friends entering the SAT competition 2014. In Belov, A., Diepold, D., Heule, M., & Jarvisalo, M. (Eds.), Proceedings of SAT Competition 2014: Solver and Benchmark Descriptions, Vol. B-2014-2 of Department of Computer Science Series of Publications B, pp. 39{40. University of Helsinki.

    Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.). (2009). Handbook of Satis ability, Vol. 185 of Frontiers in Arti cial Intelligence and Applications. IOS Press.

  • Related Research Results (2)
  • Metrics
Share - Bookmark