Differential-algebraic solutions of the heat equation

Preprint English OPEN
Buchstaber, Victor M.; Netay, Elena Yu.;
(2014)
  • Subject: Mathematical Physics | Mathematics - Dynamical Systems
    arxiv: Nonlinear Sciences::Exactly Solvable and Integrable Systems

In this work we introduce the notion of differential-algebraic ansatz for the heat equation and explicitly construct heat equation and Burgers equation solutions given a solution of a homogeneous non-linear ordinary differential equation of a special form. The ansatz fo... View more
  • References (6)

    [1] E. Yu. Bunkova, V. M. Buchstaber, Polynomial Dynamical Systems and Ordinary Di erential Equations Associated with the Heat Equation, Funct. Anal. Appl., 46:3 (2012), 173{190.

    [2] E. Yu. Bunkova, V. M. Buchstaber, Heat Equations and Families of Two-Dimensional Sigma Functions, Proc. Steklov Inst. Math., 266 (2009), 1{28.

    [3] E. Hopf, The partial di erential equation ut + uux = uxx, Comm. Pure Appl. Math., 3:3 (1950), 201{230.

    [4] H. Bateman, A. Erdelyi, Higher transcendental functions. Vol. 1, 1953.

    [5] D. Mumford, Tata Lectures on Theta I, II, Birkhauser, Boston-Basel-Stuttgart, 1983-1984.

    Steklov Institute of Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia. E-mail address: bunkova@mi.ras.ru (E.Yu.Netay), buchstab@mi.ras.ru (V.M.Buchstaber)

  • Metrics
    No metrics available
Share - Bookmark