publication . Preprint . Article . 2018

Maximum Quantum Entropy Method

Jae-Hoon Sim; Myung Joon Han;
Open Access English
  • Published: 01 Nov 2018
Abstract
Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications of our generalized formalism to a model spectrum and a real material demonstrate its usefulness and superiority.
Subjects
free text keywords: Condensed Matter - Strongly Correlated Electrons, Physics, Von Neumann entropy, Matrix (mathematics), Probabilistic logic, Quantum relative entropy, Applied mathematics, Analytic continuation, Invariant (mathematics), Continuation, Condensed matter physics, Unitary transformation
48 references, page 1 of 4

[1] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2001).

[2] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001).

[3] J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).

[4] M. Boninsegni and E. Manousakis, Phys. Rev. B 46, 560 (1992).

[5] J. Schott, I. L. M. Locht, E. Lundin, O. Granas, O. Eriksson, and I. Di Marco, Phys. Rev. B 93, 075104 (2016).

[6] H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).

[7] O. Gunnarsson, M. W. Haverkort, and G. Sangiovanni, Phys. Rev. B 82, 165125 (2010).

[8] A. W. Sandvik, Phys. Rev. B 57, 10287 (1998).

[9] J. Otsuki, M. Ohzeki, H. Shinaoka, and K. Yoshimi, Phys. Rev. E 95, 061302 (2017).

[10] P. Staar, B. Ydens, A. Kozhevnikov, J.-P. Locquet, and T. Schulthess, Phys. Rev. B 89, 245114 (2014).

[11] L.-F. Arsenault, R. Neuberg, L. A. Hannah, and A. J. Millis, Inverse Problems 33, 115007 (2017). [OpenAIRE]

[12] K. Haule, C.-H. Yee, and K. Kim, Phys. Rev. B 81, 195107 (2010).

[13] D. Bergeron and A.-M. S. Tremblay, Phys. Rev. E 94, 023303 (2016).

[14] M. Jarrell and J. E. Gubernatis, Physics Reports 269, 133 (1996).

[15] O. Gunnarsson, M. W. Haverkort, and G. Sangiovanni, Phys. Rev. B 81, 155107 (2010).

48 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue