Newton Binomial Formulas in Schubert Calculus

Preprint English OPEN
Cordovez, Jorge; Gatto, Letterio; Santiago, Taise;
(2008)
  • Subject: Mathematics - Combinatorics | 14N15 | 14M15 | 15A75 | Mathematics - Algebraic Geometry
    arxiv: Mathematics::Algebraic Geometry | Mathematics::Number Theory

We prove Newton's binomial formulas for Schubert Calculus to determine numbers of base point free linear series on the projective line with prescribed ramification divisor supported at given distinct points.
  • References (20)
    20 references, page 1 of 2

    [1] P. J. Cameron. Combinatorics - Topics, Techniques, Algorithm. Cambridge University Press, 1994.

    [2] CoCoA team, CoCoA: a system for doing Computations in Commutative Algebra, http://cocoa.dima.unige.it.

    [3] D. Eisenbud, J. Harris, Divisors on general curves and cuspidal rational curves, Invent. Math. 74, (1983), 371-418.

    [4] W. Fulton, Intersection Theory, Springer-Verlag, 1984.

    [5] L. Gatto, Schubert Calculus via Hasse-Schmidt Derivations, Asian J. Math., 9, No. 3, (2005), 315-322.

    [6] L. Gatto, Schubert Calculus: an Algebraic Introduction, Instituto de Matema┬┤tica Pura e Aplicada, Rio de Janeiro, 2005.

    [7] http://calvino.polito.it/~gatto/English/research/SCGA/cgscodes.htm

    [8] L. Gatto, T. Santiago, Schubert Calculus on Grassmann Algebra, Canad. Math. Bulletin, to appear, arXiv:math.AG/ 0702759v1, 26 Feb 2007.

    [9] D. R. Grayson, M. E. Stillman, Schubert2, computations of characteristic classes for varieties without equations, part of Macaulay 2, a software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2.

    [10] Ph. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978.

  • Metrics
    No metrics available
Share - Bookmark