A Fast Radio Burst Host Galaxy

Preprint English OPEN
Keane, E. F. ; Johnston, S. ; Bhandari, S. ; Barr, E. ; Bhat, N. D. R. ; Burgay, M. ; Caleb, M. ; Flynn, C. ; Jameson, A. ; Kramer, M. ; Petroff, E. ; Possenti, A. ; van Straten, W. ; Bailes, M. ; Burke-Spolaor, S. ; Eatough, R. P. ; Stappers, B. W. ; Totani, T. ; Honma, M. ; Furusawa, H. ; Hattori, T. ; Morokuma, T. ; Niino, Y. ; Sugai, H. ; Terai, T. ; Tominaga, N. ; Yamasaki, S. ; Yasuda, N. ; Allen, R. ; Cooke, J. ... view all 41 authors (2016)
  • Related identifiers: doi: 10.1038/nature17140
  • Subject: Astrophysics - High Energy Astrophysical Phenomena | Astrophysics - Cosmology and Nongalactic Astrophysics
    arxiv: Astrophysics::Galaxy Astrophysics | Astrophysics::Cosmology and Extragalactic Astrophysics | Astrophysics::High Energy Astrophysical Phenomena

In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in pinpointing their celestial coordinates. Here we present the discovery of a fast radio burst and the identification of a fading radio transient lasting $\sim 6$ days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be $z=0.492\pm0.008$. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionised baryons in the intergalactic medium of $\Omega_{\mathrm{IGM}}=4.9 \pm 1.3\%$, in agreement with the expectation from WMAP, and including all of the so-called "missing baryons". The $\sim6$-day transient is largely consistent with a short gamma-ray burst radio afterglow, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting there are at least two classes of bursts.
  • References (30)
    30 references, page 1 of 3

    1. Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J. & Crawford, F. A Bright Millisecond Radio Burst of Extragalactic Origin. Science 318, 777-780 (2007).

    2. Keane, E. F., Stappers, B. W., Kramer, M. & Lyne, A. G. On the origin of a highly dispersed coherent radio burst. Mon. Not. R. Astron. Soc. 425, L71-L75 (2012).

    3. Thornton, D. et al. A Population of Fast Radio Bursts at Cosmological Distances. Science 341, 53-56 (2013).

    4. Spitler, L. G. et al. Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey. Astrophys. J. 790, 101-110 (2014).

    5. Burke-Spolaor, S. & Bannister, K. W. The Galactic Position Dependence of Fast Radio Bursts and the Discovery of FRB 011025. Astrophys. J., 792, 19-26 (2014).

    6. Ravi, V., Shannon, R. M. & Jameson, A. A Fast Radio Burst in the Direction of the Carina Dwarf Spheroidal Galaxy. Astrophys. J. 799, L5-L10 (2015).

    7. Petroff, E. et al. A real-time fast radio burst: polarization detection and multiwavelength follow-up. Mon. Not. R. Astron. Soc. 447, 246-255 (2015).

    8. Masui, K. et al. Dense magnetized plasma associated with a fast radio burst. Nature 528, 523-525 (2015).

    9. Champion, D. et al. Five new Fast Radio Bursts from the HTRU high latitude survey: rst evidence for two-component bursts. Mon. Not. R. Astron. Soc., submitted (2015). 1511. 07746.

    10. McQuinn, M. Locating the ”Missing” Baryons with Extragalactic Dispersion Measure Estimates. Astrophys. J. 780, L33-L38 (2014).

  • Metrics
    No metrics available
Share - Bookmark